

1 **Botnet business models, takedown attempts, and the darkweb market: a survey**

2 DIMITRIOS GEORGOULIAS, Aalborg University, Denmark

3 JENS MYRUP PEDERSEN, Aalborg University, Denmark

4 MORTEN FALCH, Aalborg University, Denmark

5 EMMANOUIL VASILOMANOLAKIS, Technical University of Denmark, Denmark

6 Botnets account for a substantial portion of cybercrime. Botmasters utilize darkweb marketplaces to promote and provide their services, which can vary from renting or buying a botnet (or parts of it), to hiring services (e.g. distributed denial of service attacks). At the same time, botnet takedown attempts have proven to be challenging, demanding a combination of technical and legal methods, and often requiring the collaboration of a plethora of entities with varying jurisdictions. In this article, we map the elements associated with the business aspect of botnets, and utilize them to develop adaptations of two widely used business models. Furthermore, we analyze the 28 most notable botnet takedown operations carried out over from 2008 to 2021, in regard to the methods employed, and illustrate the correlation between these methods and the segments of our adapted business models. Our analysis suggests that the botnet takedown methods have been mainly focused on the technical side, but not on the botnet economic components. We aim to shed light on new takedown vectors and incentivize takedown actors to expand their efforts to methods oriented more towards the business side of botnets, which could contribute towards eliminating some of the challenges that surround takedown operations.

7 CCS Concepts: • **Security and privacy** → **Economics of security and privacy**.

8 Additional Key Words and Phrases: cybercrime, botnets, economics, business models, attacks, takedowns, marketplace, forum, darkweb

9 **ACM Reference Format:**

10 Dimitrios Georghoulas, Jens Myrup Pedersen, Morten Falch, and Emmanouil Vasilomanolakis. 2022. Botnet business models, takedown attempts, and the darkweb market: a survey. 1, 1 (December 2022), 37 pages. <https://doi.org/10.1145/1122445.1122456>

11 **1 INTRODUCTION**

12 Cybercrime is a constantly increasing threat to the digital world [38, 125]. Attackers are evolving their methods of operation and defenders are trying to adapt to these methods, to effectively counter them. It is a never ending cycle, a cat-and-mouse game [39, 103], with data suggesting that the defenders are on the losing side, always being a step behind [12, 20, 93]. One of the main reasons behind cybercrime’s constant evolution, is the economic incentive. Cyber criminals are motivated by profit to keep coming up with new ways to carry out their operations and evade the authorities’ detection, defense and disruption attempts. The revenue of each cybercrime enterprise is proportionally linked to its ability to conduct its business uninterrupted and to the maximum potency possible. The smoother and more impactful the operations are, the more profit the organisation will eventually produce.

13 Authors’ addresses: Dimitrios Georghoulas, Aalborg University, Copenhagen, Denmark; Jens Myrup Pedersen, Aalborg University, Copenhagen, Denmark;
14 Morten Falch, Aalborg University, Copenhagen, Denmark; Emmanouil Vasilomanolakis, Technical University of Denmark, Kongens Lyngby, Denmark.

15 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
16 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
17 of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
18 redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

19 © 2022 Association for Computing Machinery.

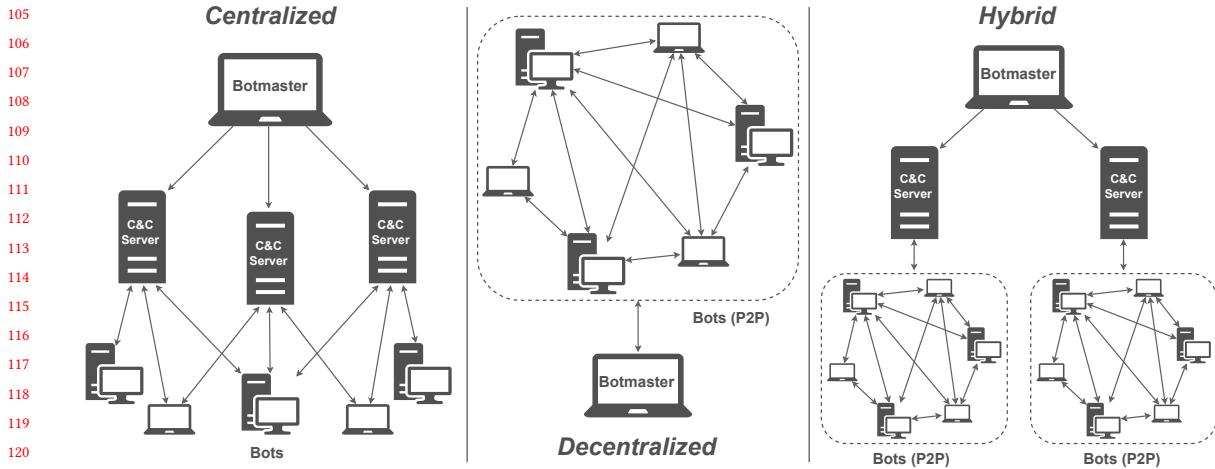
20 Manuscript submitted to ACM

21

22 Manuscript submitted to ACM

53 Cybercrime actors have the option of utilising their resources privately or providing them as a product/service for a fee
 54 to potential clients, known as Cybercrime-as-a-Service (CaaS). These clients can simply go online, access marketplaces
 55 both in the clearweb and the darkweb, and choose from a large variety of services. This leads to cybercriminals operating
 56 under an “as-a-service” model [62, 127] and essentially turning their collective operations into a business industry. An
 57 individual or organisation can build their business around a wide range of services that, depending on their nature, can
 58 be provided through various pricing models.
 59
 60

61 1.1 Botnet Background


62 The Internet Chat Relay (IRC) protocol is considered as the origin of botnets. Bots were initially benign and used by the
 63 protocol to provide services and support. The first IRC bot was created in 1993, under the name Eggdrop [26, 106, 124].
 64 Eggdrop was then further developed, and soon malicious bots made their appearance. These bots’ purpose was to attack
 65 other IRC users or even whole servers, which in time resulted in these bots being engineered to be able to carry out
 66 Distributed Denial of Service (DDoS) [72] attacks. Nevertheless, the first botnet that managed to gain public attention
 67 was the *Earthlink Spammer* [35], which surfaced in 2000 and had been created by Khan K. Smith. The botnet managed
 68 to send over 1.25 million malicious emails in one year’s span, with the purpose of collecting sensitive information from
 69 users, such as credit card credentials. The number of botnets has increased to a significant degree since then, leading to
 70 various types of botnets, categorized based on certain characteristics.
 71
 72

73 In essence, botnets are devices infected by malware which allows them to be controlled by an individual other
 74 than the legitimate owner, called the botmaster. They can be used for a variety of purposes [71], the main ones being
 75 *information gathering* [25], *distributed computing* [129], *cyber fraud* [29], *spreading malware*, *cyberwarfare* [22, 140],
 76 *unsolicited marketing* [130], *network service disruption* [72], and *cryptojacking* [37, 96].
 77
 78

79 In addition to purpose, another point of differentiation amongst botnets is their architecture, which varies depending
 80 on the mechanism used to disseminate the botmaster commands throughout the botnet. There are three basic archi-
 81 tectures: *centralised*, *decentralised* and *hybrid* [124] (see Figure 1). In a *centralised* architecture the bots receive the
 82 botmaster commands through one or more Command and Control (C&C) servers. In this scenario the C&C servers
 83 are the backbone of the infrastructure, providing coordination to the bot army, and the main protocols used are IRC
 84 and HTTP. In a *decentralised* architecture this task is carried out using a Peer-to-Peer (P2P) protocol, with all of the
 85 bots contributing to the coordination of the bot network by disseminating commands¹ to their peers [56, 143]. Lastly,
 86 in a *hybrid* architecture, the dissemination mechanism is a combination of the two aforementioned architectures. An
 87 example would be a botnet using multiple C&C servers, tasked with handling a specific number of bots, which are
 88 communicating through P2P. Each architecture presents its own pros and cons. The fundamental advantages of the
 89 *centralized* architecture, are its speed and simplicity; however, it lacks in resilience due to the fact that the C&C servers
 90 are potential points of failure. The *decentralized* and *hybrid* architectures are more complex to implement but provide a
 91 higher level of resilience against takedown attempts.
 92
 93

94 Maintaining a healthy bot supply is a priority for botmasters. This is where the propagation mechanism comes into
 95 play. There are two major families of mechanisms tasked with the propagation of the bot malware: *active* and *passive*
 96 [71]. Active propagation is achieved mainly through scanning, where the infected devices search for new potential
 97 hosts, without the need of human interaction. Passive propagation on the other hand, requires a certain level of human
 98 interaction, with *Drive-by Download*, *Infected Media*, and *Social Engineering* as the main mechanisms utilized [71].
 99
 100

101
 102 ¹In this case, due to the lack of C&C servers, the botmaster can instead connect to one of the bots to issue the commands, which will gradually spread via
 103 P2P to the rest of the botnet.
 104

Fig. 1. Examples of the *Centralized*, *Decentralized*, and *Hybrid* botnet architectures.

Stealth is always critical when running any illegal enterprise. Botmasters are using a variety of methods, like Bulletproof Hosting Services (BPHS) [6, 54] (see Section 3.2.1) and fluxing techniques [7, 71], that aim to obfuscate the C&C server(s). These methods provide takedown resilience to botnets, since they make locating the C&C server a challenging task for takedown actors. Furthermore, many botmasters, have started utilising the darkweb, and specifically the Tor network [7], aiming to provide increased stealth to their operations. The way they achieve this is by using a Tor *Hidden Service* (HS) [139] as the C&C server, a service which can only be found inside the Tor network and only if someone possesses the unique address of the service, known as the *Onion Address*. This infrastructure provides even greater resilience to the C&C server. However, the darkweb is not only being used for C&C obfuscation purposes. It also serves as the most popular marketplace for botmasters to advertise and provide their services through HSs, and that is mainly thanks to the anonymity that it provides to potential users – clients. The combination of cost effectiveness and resilience, has led to botnets turning into a very successful market, where someone can buy a whole botnet infrastructure, rent one (or even parts of it) or acquire the services of one (e.g. attacks) [62, 113].

The reason why botnets are so widely used by cybercriminals is because they can be inexpensive to deploy while being effective, turning them into one of the most common threats on the Internet for many years [35, 38]. In the hands of a malicious user, they can be a source of significant financial harm, contributing to cybercrime amounting to billions of dollars in damages annually and specifically closing in on \$1 trillion in 2020 [125]. Additionally, in recent years, Internet of Things (IoT) botnets have been on the rise, with *Mirai* [8, 72] being a prime example, making matters even worse by providing new bot supply sources for botmasters. These types of botnets are networks of devices like smart watches, cameras, medical sensors and smart refrigerators, adding to the recruitment potential of botmasters.

With so many options being available to botmasters in regard to bot assimilation and coordination, obfuscation of their operations, as well as selling platforms, takedown operations are bound to face many challenges (see Section 4.3). These challenges can be technical, legal [32, 146], or related to jurisdiction, since in most cases botnet architectures tend to be spread over different countries. To counter the elusiveness and resilience of botnet operations, in many occasions several organisations (e.g. law enforcement agencies, large corporations, legal authorities) will pool their

157 resources together, to increase the effectiveness of takedown attempts. This approach has proven fruitful over the years,
 158 but demands careful coordination.
 159

160
161 1.2 Article contributions
 162

163 The topic of botnets is widely popular among researchers, a fact that has lead to notable work on several of their
 164 aspects, namely their use purposes, architectures, defence, detection, evasion/obfuscation, as well as research focusing
 165 on their economic elements (see Section 5.) We argue that due to the state of the botnet ecosystem there is promise in
 166 further researching the economic infrastructure of botnets. Their operation, which resembles that of a legitimate online
 167 business, follows certain business models. Researching those models provides insight on how the botnet economy
 168 operates internally. In this article, we explore the financial ecosystem of a botnet business, map its components by
 169 developing two adaptations of the *Value Chain Model* and the *Business Model Canvas*, and analyse how this ecosystem
 170 can be correlated to takedown attempts performed against 28 botnets from the year 2008 and onward. To the best of
 171 our knowledge, this is the first work following such an approach. The ultimate goal we aim to contribute towards are
 172 economic disruption methods, which can be a valuable addition to the arsenal of botnet takedown operations. Such
 173 methods would eliminate various challenges these operations often face, such as legal issues, technical issues (e.g.
 174 reverse engineering of the botnet malware), or issues related to the jurisdiction of the entities involved [32, 146] (see
 175 Section 4.3). Hence, the identification of weak points in the botnet business models that are directly related to revenue
 176 generation, and their exploitation, can prove to be a very efficient tool in the fight against botnet cybercrime, by striking
 177 at the heart of the botnet cybercrime, namely the generation of profit. Hindering the mechanisms that operate under
 178 the revenue making umbrella, would gradually take away the botmasters' incentives, by making their efforts not worth
 179 the risks that accompany running a cybercrime enterprise.
 180

181 The contribution of this work can be summarized in the following points. In this paper we:
 182

- 183 • illustrate how the *Value Chain Model* and the *Business Model Canvas* can be used to map out the elements of a
 184 botnet infrastructure operating as a profitable business, leading to the development of two adapted models,
 185
- 186 • analyze takedown attempts against 28 botnets from 2008 until 2021, in terms of takedown methods utilized, and
 187 illustrate the correlation between these methods and our adapted models,
 188
- 189 • explore the technical, legal, and jurisdictional challenges that surround botnet takedown operations,
 190
- 191 • provide insight on potential directions for future botnet takedown operations.
 192

193
194 1.3 Methodology
 195

196 The first step in our process for this work was gathering scientific research papers suitable to provide background
 197 information on botnets, covering several of their aspects (e.g. architectures and detection methods) (see Sections 1 and
 198 5). Surveys and taxonomies on botnets, with a high scientific contribution, were a valuable source for this information.
 199

200 Secondly, after choosing to utilize Michael Porter's *Value Chain Model* [108] and Alexander Osterwalder's *Business*
 201 *Model Canvas* [102] because of their popularity and wide application, with the goal of mapping out the elements of a
 202 botnet as a business, we explored the authors' original work, as well as available online resources, such as articles on
 203 economics which elaborated on the two models' implementation.
 204

205 The next phase was dedicated to research on the specific topic of botnet economics (see Section 5.2), which also
 206 included work gravitating towards the development of disruption methods, with elements related to economics as their
 207

209 foundation. In order to create an archive of papers to review on this subject, we carried out a literature review on the
210 basis of keywords and phrases such as “*botnet economics*”, “*botnet disruption*”, and “*botnet takedown*”.
211

212 The fourth step incorporated analyzing past botnet takedowns since 2008, in terms of the methods used, the entities
213 involved, as well as the characteristics of each botnet (e.g. size and impact) (see Section 4), which was achieved through
214 scientific papers and online articles available on the websites of organisations participating in the takedown operations,
215 such as law enforcement agencies (e.g. Europol), large enterprises (e.g. Microsoft), and non-profit cyber security
216 organisations (e.g. The Shadowserver Foundation). Articles on widely popular websites related to cyber security (e.g.
217 Krebs on Security), worldwide news agencies (e.g. BBC) and newspapers (e.g. The Guardian), also contributed to
218 completing this task.
219

220 Last but not least, these same resources were also utilized to examine the difficulties that surround botnet takedown
221 operations, which can be of legal, ethical, or technical nature, as well as related to the jurisdiction of the takedown
222 actors (see Section 4.3). Analysing past botnet takedowns along with the accompanying challenges of these operations,
223 provided the necessary insight needed to create the link between takedown efforts and the business models applied by
224 botnets, but also led to observations regarding the potential course of action in future takedown operations.
225

227 1.4 Outline

228 The remainder of this article is as follows. At the end of this section, we present the methodology used to carry out
229 this survey. In Section 2, we give an overview of cybercrime’s evolution, darkweb marketplaces and forums, and two
230 economic models that can be applied to cybercrime operations. In Section 3, we present our implementations of the
231 *Value Chain Model* and the *Business Model Canvas*. Section 4 is dedicated to botnet takedown efforts, how they can be
232 correlated to economic models, the challenges that surround takedown operations, as well as potential future steps. In
233 Section 5, we report notable existing research on botnets, as well as on the specific topic of botnet economics. Lastly, in
234 Section 6, we summarize this survey and discuss the main takeaway points.
235

236 2 CYBERCRIME AS A BUSINESS

237 In this section, we are discussing the phenomenon of cybercrime over the years, darkweb marketplace and forum
238 utilisation by cybercrime actors, their impact, as well as efforts made towards taking down these platforms.
239

240 In the earlier days of cybercrime, the communication between cybercriminals and potential clients, was mainly
241 carried out using the IRC protocol [11], [33]. IRC would serve as a marketplace where clients could visit various channels
242 and acquire the service of their choosing. Channels were also used for internal communication between the cybercrime
243 actors and aspiring hackers, some of which are still operational [33], [58]. Along with IRC channels, presently there are
244 dedicated websites and forums, which clients can simply visit through their browser, providing higher ease of access.
245 After establishing communication, further contact with the vendors, can include other means, such as the instant
246 messenger application *Wickr*, which has lately emerged as very popular, the encrypted mail service provider *ProtonMail*,
247 or other platforms such as *Google+*, *Telegram*, *ICQ*, *Facebook*, *Twitter*, *AIM*, *Jabber*, *Reddit*, *Signal*, and *WhatsApp* [36, 92].
248

249 2.1 Darkweb Marketplaces & Forums

250 The darkweb is an Internet overlay network that requires special software to access, has special configuration and
251 access authorization, and it is a subset of the Deep Web. The Deep Web can be described as every part of the Internet
252 that is not accessible to the average user and it represents around 96% of the overall Internet. Apart from providing
253 anonymity to legitimate users, the darkweb can be abused by cyber criminals to perform illegal activities as well. Over
254

Market	Icarus Market	Canada HQ	Darkode Reborn	Deep Sea Market	White House Market	Dark Market	ToRReZ Market	The Versus Project	Monopoly	Neptune Market	Hydra Market
Forced PGP	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
2FA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Payment methods	BTC, XMR, Litecoin	BTC	BTC, XMR	BTC	BTC, XMR	BTC, XMR	BTC, XMR, Litecoin, Zcash	BTC, XMR	XMR	BTC, Litecoin, XMR	BTC

Table 1. Example of darkweb marketplace authentication mechanisms and payment methods [30].

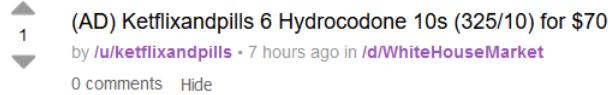


Fig. 2. Drug vendor advertisement in the Dread forum.

the years, marketplaces [122, 123] and forums [27, 88] have been established on the darkweb, and mainly on the Tor network, where cybercriminals can take advantage of the protocol’s anonymity and obfuscation properties to conduct their operations. The anonymity provided by the darkweb works in two ways:

- **The Sellers:** Tracing sellers that are operating in the darkweb is much more challenging for Law Enforcement Agencies (LEAs). Furthermore, cybercriminals can control the level of access control they want for their marketplaces, depending on the how they advertise the onion address of their Tor hidden service [139] their marketplace is running on, what payment methods they accept (e.g. escrow [50]), which cryptocurrencies are available, like Monero (XMR) [28] and Bitcoin (BTC) [13, 79, 104], and which authentication mechanisms they implement (see Table 1). This leads to LEAs and researchers, also finding it difficult to gain access to some marketplaces, to gather and analyze data, in an effort to disrupt the marketplaces’ operation.
- **The Buyers:** Individuals interested in acquiring services from these marketplaces, can effectively maintain their identities hidden when visiting them. This makes these marketplaces more appealing to the clients by offering a sense of security against being discovered or even, in many cases, being prosecuted for breaking the law.

The darkweb’s anonymity properties extend to the forums as well, where potential buyers can discuss with former buyers, read reviews and receive guidance on ways they could go about making a purchase on the marketplaces.

2.1.1 Forums vs Marketplaces.

Forums are fundamentally different digital platforms than marketplaces². In forums, there is constant communication among members of the illegal trading community, be it sellers or buyers, with discussions on several topics, such as marketplaces, vendors, services, and payment. Furthermore, forums serve as platforms where vendors can advertise their products and services (Figure 2).

This makes forums a great place for buyers to navigate through, in an effort to find the best source offering what they need. They can read existing posts, directly ask other users, and generally use the feedback of more experienced buyers, as a guide, to make the right choices. Negative feedback will serve as a cautionary tale for future users (Figure 3).

²In this paper, for the sake of simplicity, when mentioning marketplaces, we also include vendors shops, which in truth are a more elementary version of marketplaces with far fewer features, and include products and services from a single seller [50].

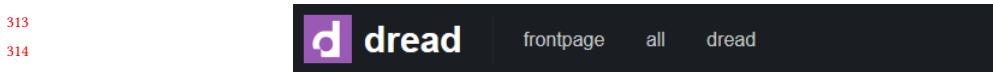


Fig. 3. Dread forum discussion thread on a marketplace scam.

Marketplaces on the other hand, are where the transactions between buyers and sellers take place. This is where botmasters can list their services, providing buyers with the advantage of browsing through the available options and choosing according to their needs. On Table 2 we present some product and service examples along with their prices, but the variety is far greater, with some vendors even trading in *COVID-19* vaccines and vaccination certificates [51]. Furthermore, there are reviews and reputation systems [50] (Figure 3.2.1), available to help the buyers choose the best combination of product and vendor, depending on their needs. In some cases, marketplaces may also have dedicated forum sections (e.g. *Hydra* [89]), and some forums may offer the capability to promote, or even sell products [62], usually of limited variety. The following personal advertisement example was taken from the *Dread* forum in February 2021:

“Hey I am a black hat hacker I can write a custom made (custom made means not recognizable by anti viruses) botnet malware with root privilege access for mining crypto, ddos site, password hijack and steal user data or bank data I don’t care and i wont judge. but I expect to get paid afterwards. I can design for windows macos and linux but not phones (ios android) will write the code in python so victim MUST have python preinstalled If interested PM so we talk details.”

Lastly, it should also be mentioned that there is a special type of marketplace called Automated Vending Cart (AVC), which, as the name suggests, can be used to carry out automated purchases of illegal products on the darkweb, completely taking interaction with the vendors, out of the equation [57]. Some of the most popular marketplaces operating today include *Torrezz* [90] and *White House Market* [91], popular forums include *Dread* [88] and *Freehacks* [27], but there are many more out there [122, 123].

2.1.2 Marketplace Takedowns.

Coordinated efforts have been successful in taking down illegal marketplaces operating in the dark web, like *Silk Road* [66], which was the first darkweb marketplace of its kind, with proof of its impact visible even to this day [60], the *Wall Street Market (WSM)* [128], *AlphaBay* and *Hansa Market* [100]. The most recent takedown is that of *DarkMarket* [17], which was considered to be the biggest illegal marketplace worldwide, operating in the darkweb, with 500,000 users, 2,400 sellers, 320,000 transactions and more than 4,650 BTC and 12,800 Monero XMR transferred, amounting to more than \$140 million at the current rate (Jan 2021). The effort was a coordinated operation of many countries involving Germany, Australia, Denmark, Moldova, Ukraine, the United Kingdom and the USA, along with Europol.

2.2 Cybercrime-as-a-Service: Business Models

Since cybercrime has taken the form of a business, it is only natural that it has some common properties with legitimate businesses and follows some of the same principles. Depending on its size, different models can be applied to the way

Category	Product-Service Type	Average Price
Credit Card Data	Cloned Mastercard with PIN	\$15
	Cloned American Express with PIN	\$35
	Cloned VISA with PIN	\$25
	Credit card details, account balance up to \$1000	\$12
	Credit card details, account balance up to \$5000	\$20
	Stolen online banking logins, minimum \$100 on account	\$35
	Stolen online banking logins, minimum \$2000 on account	\$65
	UK bank log - £3,000 GBP balance	\$50
	Germany bank log - €3,500 EUR balance	\$300
	Japan bank log - ¥400,000 JPY balance	\$350
Payment Processing Services	Stolen PayPal account details, minimum \$100	\$198.56
	PayPal transfer from stolen account, \$1000 - \$3000	\$320.39
	PayPal transfers from stolen account, \$3000	\$155.94
	Western Union transfer from stolen account, above \$1000	\$98.15
Forged Documents	US driving license, average quality	\$1500
	US driving license, high quality	\$550
	Rutgers State University student ID	\$70
	US, Canada, or Europe passport	\$1500
	Europe national ID card	\$550
DDoS Attacks [114]	Unprotected website, 10-50k requests per second, 1 hour	\$10
	Unprotected website, 10-50k requests per second, 24 hours	\$60
	Unprotected website, 10-50k requests per second, 1 week	\$400
	Unprotected website, 10-50k requests per second, 1 month	\$800
	Premium protected website, 20-50k requests per second, multiple elite proxies, 24 hours	\$200

Table 2. Example of Darkweb service-product average prices in 2020 (as reported by [45, 52]).

the infrastructure of each organisation functions, describing the different components and entities that coexist and interact with one another internally. Two prime examples are the *Value Chain Model*, created by Michael Porter[108] and Alexander Osterwalder's *Business Model Canvas* [102]. Both of the models are implemented in the context of a botnet business in Sections 3.2 and 3.3.

2.2.1 *Value Chain Model*. Porter's Value Chain Model [1, 64, 108, 133], describes a profit organisation as a system composed of activities that revolve around the production, marketing, delivery and support of a product or service. This system's ultimate goal is to provide a competitive advantage over other organisations, but it also focuses on maintaining it. It is divided into two main sets of activities: *Primary* and *Support*, with *Margin* being the outcome of the two sets' cooperation.

Primary Activities. The *primary activities* are the vital elements needed for the business to be in a position of competitive advantage, which will eventually lead to more financial profit. They are *inbound logistics*, *operations*, *outbound logistics*, *marketing & sales*, and *service*.

Inbound logistics are connected to all the activities needed to acquire the raw materials used in the production process. They also include the handling of the acquired materials, namely the warehousing and inventory control, as well as the communication between the organisation and the suppliers. In cybercrime, inbound logistics translate

417 into processes like vulnerability discovery research and communication with the suppliers of these vulnerabilities
418 [121], like hacking groups that are pouring resources into vulnerability research (e.g. networks, protocols, software,
419 applications) for exploitation and profit. They can also include the management of these vulnerabilities, after they have
420 been acquired, like inventory and updates.

421 *Operations* refer to processes through which the raw materials are turned into the final product or service, which
422 will subsequently be put out in the market, creating value for the organisation. In cybercrime the raw materials can be
423 vulnerabilities, making the final product the exploit kit developed.

424 *Outbound Logistics* include actions related to the storage, distribution and delivery of the final product to the client.
425 A cybercrime example is delivery of the final product/exploit kit to the buyers, though digital or physical means.

426 The actions associated with advertising and promoting the product/service to the customers, as well as encouraging
427 them to carry out the purchase, belong in the *marketing & sales* set of activities. In a cybercrime scenario, marketing
428 and sales can include forums where products and services can be advertised, as well as marketplaces where clients can
429 browse through and carry out purchases.

430 Lastly, *service* is always an important factor that can affect how successful an organisation becomes over time. It
431 describes the activities aiming at offering customer support, repairs, warranties and replacements, and it mainly takes
432 effect after a product/service has been sold. With darkweb drug trading as a cybercrime example, service can refer to
433 customer support in case of an issue, such as dispatching the wrong product or quantity of a product (e.g. drugs).

434 **Support Activities.** Having a dependable foundation, that can serve as a support system for the primary activities,
435 is of vital importance for every organisation. The *support activities* include *procurement*, *technology development*, *human*
436 *resource management*, and *firm infrastructure*, and constitute the backbone of the organisation.

437 *Firm infrastructure* translates into elements such as accounting, legal, and quality assurance, and is considered as the
438 supporting mechanism for all of the activities described in the model, both primary and support. In cybercrime, one
439 example element belonging in this segment would be money laundering services.

440 *Human resource management* includes the management of the business' personnel such as, recruitment and hire,
441 training, and lay offs. In cybercrime context, this segment could include staff management such as vulnerability
442 researchers, hackers, exploit developers, and support staff.

443 *Technology* refers to the hardware, software and every action performed, with the purpose of turning the raw
444 materials into the finalised product. Actions that aim towards improving the efficiency of these processes are also
445 included. An example in cybercrime would be hardware, like servers and computers, as well as software such as
446 encryption tools, password crackers, packet sniffers, communication apps, and websites.

447 *Procurement* describes the physical acquisition of the inputs, such as raw materials and resources, making this
448 segment the implementation of the planning executed by the inbound logistics' set of activities. In an exploit trading
449 cybercrime scenario, this segment could describe acquiring information of vulnerabilities from the researchers, or
450 exploit kits, mainly through digital means.

451 **Margin:** *Margin* refers to the interaction between the activities of the *Primary* and *Support* activity groups. This
452 interaction is considered as efficient when the cost of creating the service or product, which is equivalent to the cost of
453 each activity of the two groups, is lower than the price at which it is made available to the customers [78], leading
454 to profit. In cybercrime, margin would simply be the difference between the total costs of developing a vulnerability
455 exploit kit and its selling price.

469 2.2.2 *Business Model Canvas*.

470 The *Business Model Canvas* [34, 101, 102] is composed of nine building blocks. The *customer relationships*, *customer*
 471 *segments*, *channels* and *revenue streams* blocks, are mainly focused on the customer, while the *key partners*, *key activities*,
 472 *key resources* and *cost structure* blocks, focus on the business itself. Lastly, *value propositions* is the block that brings all
 473 of the other blocks together.

474
 475 *Customer Segments*: This block refers to the customer groups that the business' product/service is directed towards.
 476 In cybercrime, the costumer segments can include drug substance users, individuals interested in buying fire-arms, as
 477 well as individuals interested in acquiring botnet and malware related services.

478
 479 *Value Propositions*: Value propositions describes the value exchange taking place between the business and its clients,
 480 and are in essence the products and services the business is offering, in order to satisfy the needs of a customer segment.
 481 Value propositions, in a cybercrime scenario, could refer to services such as phishing services [127] and botnet attacks
 482 [72], and products such as exploits, ransomware and illegal drugs.

483
 484 *Channels*: The channels building block refers to the means of communication the business uses to reach the customer
 485 segments, such as digital platforms, social media, and the means used to maintain that communication, once it has
 486 been established. The purchase and delivery mechanisms, such as online sales/stores and digital/physical delivery, and
 487 after-sale support, are also included in this segment. In cybercrime context, this block can refer to darkweb marketplaces
 488 and forums, messaging and E-mail applications [36], as well as postal services [92].

489
 490 *Customer Relationships*: Depending on the business, there is a degree of personalised business/client relationship
 491 needed, in order to acquire, keep and subsequently grow the client base. In cybercrime, relationships between vendors
 492 and buyers, can be established and maintained mainly through forums, marketplaces, and messaging/E-mail applications
 493 [36].

494
 495 *Revenue Streams*: The method (e.g. subscription, licensing fee) and amount of payment, that the clients are willing to
 496 provide to acquire the product/service offered by the business, belong in the revenue streams block. One-time purchases
 497 (e.g. phishing kits [109]), subscriptions(e.g. phishing services [127]) and commissions, such as money laundering services
 498 [112], are all cybercrime examples for the activities related to revenue streams.

499
 500 *Key Resources*: This block describes all the resources needed for a business, to be able to accomplish its goals, such
 501 as office space, hosting servers, computers, staff and Internet access. In cybercrime, this building block can refer to
 502 hardware like servers and computers, internet access, software, like operating systems, web applications, Virtual Private
 503 Network (VPN) software, communication applications, and staff for the different parts of the operation.

504
 505 *Key Activities*: Key activities are the essential activities that the organisation needs to focus on and prioritise, to be
 506 operational and able to produce maximum results, such as production (e.g. factory), problem solving (e.g. hospital),
 507 marketing and advertising, and maintenance. Some cybercrime examples are drug sales, attack execution (e.g. DDoS
 508 attack), exploit and malware sales, as well as advertising on forums. Furthermore, finding a way to breach a target's
 509 security system, by the request of a client, qualifies as problem solving and is included in this building block as well.

510
 511 *Key Partners*: In addition to suppliers, working with partners can lead to mutual profit, making it an important
 512 stepping stone in order to reach higher levels of growth. Some examples of partners to cybercriminals can be vulnerability
 513 researchers and hackers, malware and exploit kit developers, and illegal drug manufacturers.

521 *Cost Structure*: This last block refers to all the core costs that are associated with the business' operation. In cybercrime,
522 this building block can include hardware maintenance costs, staff salaries, vulnerability research, exploit kit development
523 costs (in the case of an internal department), and hiring fees (in the case of external associates).

525 3 APPLYING BUSINESS MODELS TO BOTNETS

527 The fact that the darkweb is so effective at obfuscating the identities of its users, has made it the perfect marketplace
528 for botnets. Furthermore, the increased popularity of e-coins, and especially BTC and XMR, has contributed towards
529 developing the botnet economy structure into a successful business that provides anonymity to its clients. Therefore,
530 botnets present similarities in their financial functionality, to legitimate businesses, with economic models being
531 composed of common elements. This can be accomplished by mapping out their business' infrastructure according
532 to specific economic models, which can be further customized depending on how the botmaster envisions running
533 their organisation. In Section 2.2, we discussed two well-known business models, namely the *Value Chain Model* and
534 the *Business Model Canvas*, and how they can be applied into the cybercrime context. In this section, we map out the
535 various elements of a botnet organisation through the utilization of the two aforementioned economic models.
536

537 3.1 Setting Up A Botnet

538 A preliminary step that must be executed independently from the economic model of choice, is the initial set up of the
539 botnet. The foundation for the creation of every botnet, is the malware. The botmasters, in many cases, are not the
540 actual developers of the botnet software [113], which means that they need to acquire the malware they will build their
541 organisation on. At this point they have two choices [62]. The first choice is buying (or renting) an established botnet.
542 This option offers more ease for users not as technically competent, but since the botnet is already fully developed, its
543 purpose is already assigned and the botmaster must choose accordingly (e.g. spam botnet or credential theft botnet). In
544 this scenario the buyer is provided with the C&C server's information and is also given administrator's access. The
545 second option is buying a botnet framework [97]. This option includes only the bot application, that is used to infect
546 hosts and further expand the bot army, and the C&C server application. This option is more suitable for users with
547 technical proficiency and offers much more flexibility, by allowing the buyer to develop and personalise the botnet
548 according to their specific needs. In this scenario, the buyer also has the advantage of the seller not knowing the
549 information of the C&C server, which is the case when buying an already established botnet. An additional step to the
550 framework option and in the case where the botmaster is the developer, is the fact that they will have to independently
551 acquire BPHS [6, 54, 62] (see Section 3.2.1), while an already set up botnet, will often be accompanied by these services.
552

553 3.2 Value Chain Model

554 This section is dedicated to illustrating how the Value Chain Model can map into the economic infrastructure of a
555 botnet, both in the scenario where the botnet is made available to clients as a service or product (CaaS), and in the
556 scenario the botnet is only serving the botmaster's own personal agenda. To accommodate for this differentiation
557 between the two cases, along with the specific nature of a botnet as a business, we propose a new implementation (see
558 Figure 4) of the original value chain model (c.f. Section 2.2), which aims at providing a more accurate illustration of the
559 different factors that play a role in the economic ecosystem of a botnet.

560 Our adapted model presents changes in the *inbound logistics*, *operations*, *outbound logistics*, and *marketing & sales*
561 segments from the *primary activities* group (in blue), as well as the *procurement* segment from the *support activities*
562 group (in orange). In specific, operations, as described in Section 2.2.1, do not have a place in the model, due to the fact
563

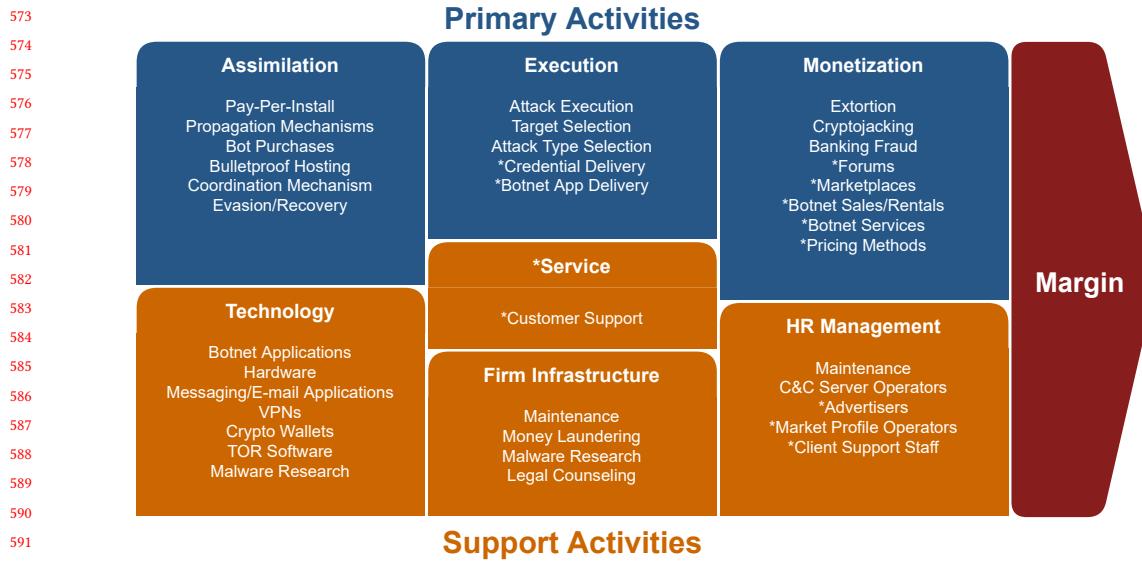


Fig. 4. Botnet Value Chain Model (adapted from the original [1, 64, 108, 133], see also Section 2.2.1). The elements preceded by an asterisk refer to the parts of the segments that are removed if the botnet is only used privately by the botmasters, to serve their own personal agenda.

that there is no actual production procedure, transforming the raw materials into the final products, while outbound logistics have a very restricted role due to the nature of a botnet business. For these two reasons, we implement a new segment in the primary activities, called *Execution*, which replaces both of these blocks and contributes towards a more compact application of the model. In addition, the procurement block is removed from the support activities and merged with inbound logistics (see Section 2.2.1), resulting in the new block *Assimilation*. The reasoning behind this adjustment is the fact that due to the nature of the business, there is no need for a separate block describing the physical acquisition of the raw materials, namely the bots. After the infection of the host, the bots automatically join the network (raw material acquisition), through the coordination mechanism already implemented in the bot binary. Lastly, the marketing and sales segment is renamed into *Monetization*, and repurposed to more accurately describe how the botnet operations can create revenue for the botmaster, both in the presence and absence of a client segment.

3.2.1 *Primary Activities*. The primary activities of a botnet business are *assimilation*, *execution*, *monetization* and *service*.

Assimilation: *Assimilation* can be summarized as all the activities performed behind establishing a healthy bot supply. Having a healthy supply of bots is vital for every bot network. From time to time, bots may go offline and leave the botnet permanently. The botmaster needs to keep the desired number of bots, at a healthy level, so they need to plan ahead. Bolstering the ranks of the bot army, or simply maintaining a steady number of bots, is a priority, and it can be achieved through propagation mechanisms [1], by acquiring Pay-per-Install (PPI) [19] services, and by purchasing individual bots and “bundles” that include a large number of bots, which can then be used according to the botmaster’s vision about the organisation [9, 62].

Apart from the rank bolstering methods, the exact mechanism that is tasked with coordinating the bots, after their creation, is also a crucial part of the assimilation block. In a hybrid or centralised architecture, coordination is achieved

625 through the “phone home” function of the bots. This mechanism is used by every bot for the connection to the C&C
626 server, after which they become part of the bot army. It can be based on domain name usage, IPs, Domain Generation
627 Algorithm (DGA)s [71], the blockchain [48], or Tor hidden services [7]. In the case the botnet is following a P2P
628 architecture, coordination is achieved through the peer communication with the other nodes of the network [56, 143].
629 Depending on which of these mechanisms are implemented, as well as the botnet’s architecture, botmasters need
630 to acquire the services of domain registrars, in case the botnet is utilising the Domain Name System (DNS) protocol
631 as part of the coordination mechanism or backup channel, but most importantly establishing a C&C server (hybrid
632 or centralised architecture). The fact that C&C servers are the most important component of these types of botnets,
633 renders securing them to as high a degree as possible imperative. For that reason botmasters acquire BPHSs [6, 54] for
634 their servers. These services can also serve as storage for harvested credentials and dump sites for files, exploit kits, and
635 malware. Furthermore they are very often provided along with the purchase of already established botnets, otherwise
636 they must be acquired by the botmaster independently.
637

638 Securing the different components of the botnet infrastructure is essential. For this reason, botmasters must implement
639 evasion mechanisms [71, 124], such as *Fast Fluxing*, *Domain Fluxing* and, in case of a botnet utilising the Tor network,
640 *Tor Fluxing* [7]. In case these mechanisms fail to provide the necessary obfuscation, and a takedown effort from LEAs is
641 successful, there must be a secondary operation mechanism to fall back on. For example, a very common takedown
642 attempt against hybrid or centralised botnets, is cutting off the communication between the C&C server(s) and the bots
643 (see Section 4). Hence the secondary mechanism could include having a secondary C&C server, or multiple backup
644 servers, so if a number of servers goes offline, others may take its place, and the botnet can remain fully functional.
645

646 Cooperation with other botmasters, is also a part of the backup mechanism, which in case of an emergency (e.g.
647 takedown effort from LEAs), can be used to help regain control of the botnet, and can contribute towards the overall
648 resilience of the botnet against hostile actions (see Section 4.1.14). Such collaborations can also lead to more financial
649 gain by providing assistance and effectiveness in the botnet’s operations, like in the case of the *TrickBot* (see Section
650 4.1.14) and *Emotet* (see Section 4.1.15) botnets, where the latter, after the infection of a host, would sometimes drop the
651 *TrickBot* malware as well.
652

653 *Execution:* The execution segment refers to all of the activities that take place after the client has paid to acquire
654 a product or service, the delivery after a sale or rental, and the attack execution. In the scenario of a botnet rental,
655 the delivery can be interpreted as providing the buyer with access to the C&C server. Being the backbone of every
656 centralised or hybrid botnet infrastructure, gaining access to this server essentially means gaining full control of a part
657 of the botnet or even the whole infrastructure. This process can be carried out simply by providing the C&C server’s
658 IP, domain name or onion address, and login credentials, namely the username and password [62], through secure
659 communication channels established by the botmaster (see Section 2). Afterwards, the user can easily utilise the botnet
660 through the user interface of the C&C server.
661

662 In the scenario of a botnet sale, the process of giving control of the network over to the client, is equivalent to safely
663 proving them with the botmaster application, along with the C&C server information, in the case of an existing central
664 point of control.
665

666 If the client is only interested in acquiring botnet services, the execution segment refers to delivering these services.
667 Some examples are carrying out malware installs on hosts (PPI), or delivering stolen credentials harvested by the bots,
668 through safe communication channels (2). In a DDoS attack scenario, this would translate into executing the actual
669 attack, according to the clients’ choice of attack type (e.g. ICMP flood, SYN flood), and attack target. These choices can
670

	Rank	Items Sold
677	Rank 0	0-9
678	Rank 1	10-99
679	Rank 2	100-199
680	Rank 3	200-299
681	Rank 4	300-399
682	Rank 5	400-499
683	Rank 6	500-599
684	Rank 7	600-699
685	Rank 8	700-799
686	Rank 9	800-899
687	Rank 10	900-999
688	Top Seller	from 1000
689		

Fig. 5. Torrez marketplace vendor reputation system.

be made either entirely by the client or in collaboration with the botmaster, namely against a specific IP/specific type chosen by the client, or an attack against a corporation in general, where the botmaster would be tasked with deciding on the optimal attack details, in order to achieve maximum impact.

In the case the botmaster is not following the CaaS model, the delivery to the clients, namely the C&C server credentials and botmaster application, has no place in the segment. Despite the absence of clients, the attack execution, along with the attack type and target, still play a vital role in the revenue generating process. However, in this case, the selection of the optimal attack type and target combination, is solely performed by the botmaster, depending on their purposes and vision. These attacks can be DDoS extortion [3], ransomware extortion [141], banking fraud/credential theft [71] and cryptojacking [37, 96].

Monetization: The main method of advertising botnet services [113, 127], is through darkweb forums [27, 88] and marketplaces [122, 123] (see Section 2.1). In marketplaces botmasters can list the services they can provide (Figure 7), such as selling parts of their network, renting them and providing various types of attacks. Buyers can then easily browse through the available choices, and acquire what they desire. The main function of forums, is to provide a platform where discussions can take place between individuals interested in services provided in the darkweb. An important mechanism that ought to be mentioned, is the *support* mechanism that the majority of marketplaces implement. Users not satisfied with a product or vendor in general, can use this function to report their experience to the marketplace administrators (e.g. in the case of a scam as shown in Figure 3).

This mechanism combined with the reviews and feedback of previous buyers available on the forums and marketplaces, leads to reputation and trust playing a crucial role in the way a botmaster's business is going to evolve and establish itself in the world of illegal trading. There are even dedicated sites, that function as a database of vendors that have performed scams in the past [134], the so-called “*rippers*”. Negative feedback will lead to buyers not trusting the vendor to come through and deliver what was advertised to the expected quality. In some cases, there is no delivery at all. For that exact reason, marketplaces have implemented reputation systems for vendors [50], to provide a sense of security to potential buyers. Some examples are ranks (Figure 5), which usually range from a scale of 1 to 10, depending on the numbers of sales that a vendor has carried out, and marketplace verification levels, according to which each vendor gains one level for each marketplace that they have been verified by, attesting to their legitimacy. An example of this reputation system is showcased on Figure 6, where a vendor from the *Torrez* marketplace has been verified by


EUCarder - Rank 9 Verification Level 9		Market	Number of Deals	Rating
On ToRReZ Market Since:	Sep 1, 2020	Avaris	55	93.33%
Last Login	Mar 1, 2021	Berlusconi Market	256	90.48%
Total Amount Of Transactions	910	CRYPTONIA MARKET Walletless, Multisig, Simple and Secure	148	95.35%
Total Feedback Received	233	DarkMarket	82	99.9%
Positive Feedback Received Ratio	90.99% (212)	Empire Market	4662	95.63%
Negative Feedback Received Ratio	6.44% (15)	Olympus	8	n/a
Disputes Total:	38	RAPTURE	236	n/a
Disputes Won:	44.74% (17)	WallST Market	2573	n/a
Disputes Lost:	7.89% (3)	WHM	220	93.2%
Finalize Early	Available (can require)			

Fig. 6. Vendor reputation example in the Torrez marketplace. *Left:* Vendor profile example, including the reputation metrics. *Right:* List of marketplaces that have verified the specific vendor.

9 marketplaces (on the right - the total number of sales, along with the reputation score achieved on each of these platforms, are also included), and has consequently gained the verification level 9, which is publicly visible on their vendor profile (on the left). Additionally, as illustrated on the same figure, client feedback/reviews, dispute resolution statistics (complaint tickets created by unsatisfied clients), as well as whether the vendor has the *Finalize Early*³ badge, also affect the reputation of a vendor. Through these systems, buyers can differentiate between established and more recent sellers, that have a higher chance of being scammers. Figure 7 is an example of service listings on the *Torrez* marketplace. One can notice the service provided, such as DDoS attacks and tutorials, the service category, whether the product is digital (e.g. tutorial PDF file), whether the delivery is instant, the country of origin, payment method supported, which is either escrow or multisignature escrow [50], the price, and the accepted currencies (e.g. Monero (XMR), Bitcoin (BTC) and Litecoin (LTC)). Lastly each listing includes the vendor profile information, which is their name, number of carried out sales, as well as their verification level, rank, and number of positive/neutral/negative reviews received by previous buyers. A detailed overview of reputation systems, currencies used, as well as payment schemes found on darkweb marketplaces, is presented by Georgoulias *et al.* [50].

Depending on the course of action that the botmaster has taken while designing the infrastructure and their personal goals, a botnet can provide income through a number of methods. All of these methods are also a part of the marketing and sales segment of the model. The botnet can be sold as a whole or as separate parts, it can be rented and it can provide services. These services can vary [61] from one-time purchases (e.g. a single DDoS attack, account credentials) [72] and PPI (e.g. malware) [19], to services that follow the Pay-per-Click (PPC) (e.g traffic redirection [53]) and subscription models (e.g. botnet rental [62] and phishing services [127]).

If the botnet is not aiming to satisfy the needs of a customer group, promoting, advertising, selling, renting and providing services on marketplaces and forums, along with the pricing methods, have no application in the model. The botmaster in this case can create revenue through the ransoms gained out of extortion practises, as DDoS extortion [3]

³Marketplaces award the *Finalize Early* to highly trusted vendors, allowing them to provide services without utilizing the escrow payment mechanism, for speed and ease when carrying out sales [50].

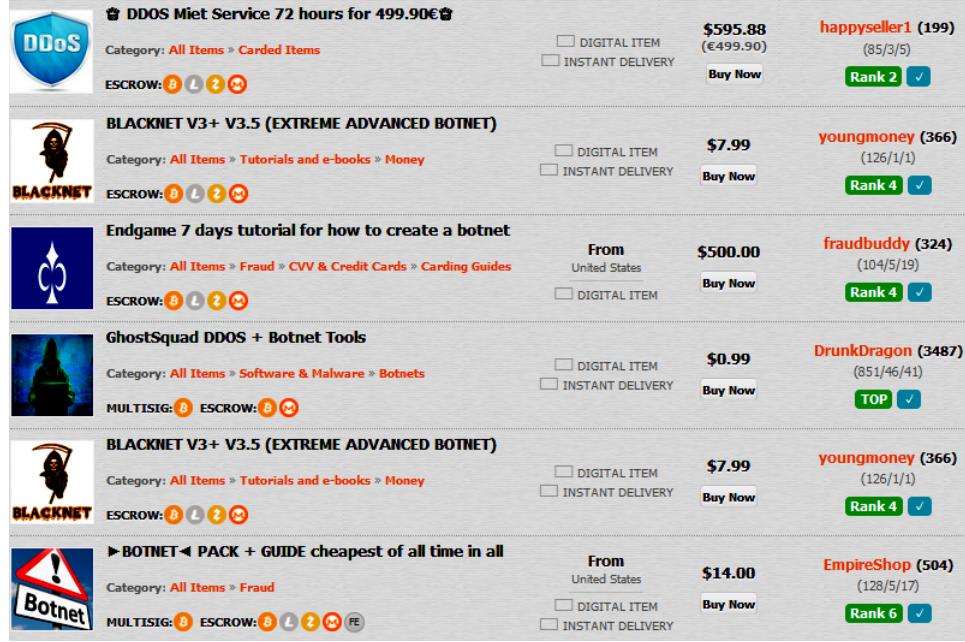


Fig. 7. Torrez marketplace botnet services.

and ransomware extortion [141]. They can also carry out banking fraud/credential theft [71] and cryptojacking [37, 96], which are two methods that can provide direct profit.

Service: The *service* segment translates into activities meant to provide support to the customers of the botnet enterprise. It includes handling issues linked to customer needs, both before and after the purchase or rental of a service. One example is technical assistance in the operation of the C&C server (in case of a rental). This segment also affects the reputation of the botmaster as a vendor, which leads to future clients showing trust and choosing them over other vendors.

If the botmaster is privately utilising his resources, the service segment, namely the customer support, does not have a place in the model.

3.2.2 Support Activities.

Firm Infrastructure: One of the components of the *firm infrastructure* block, is the legal approach of the C&C server's geolocation. The effectiveness of BPHS is heavily dependant on this geolocation. Countries differ in the way that they handle various activities of questionable legality in the cyber space, making some more suitable [54]) than others, to establish a C&C server. Hence, to deal with this state, there is a degree of legal consulting and research needed, which must be recurring, in order to accommodate for potential changes in the legal framework of countries that are either already hosting C&C servers, or that could do so in the future. Furthermore, another variable that could affect which geolocation of the C&C servers, would be optimal, is the possible attack surface. Having the C&C servers and the attack target of the botnet in different countries, is bound to make takedown efforts even more challenging, by being under

833 different jurisdictions, requiring the cooperation and coordination of multiple LEAs and countries. For instance, it
834 would be preferable for a botnet, mainly operating in the U.S, to have its C&C servers hosted in Europe or Asia).
835

836 Successful botnet operations, result in revenue, which cannot be justified to the authorities. This leads to botmasters
837 having to either acquire already established *money laundering* services, or to create their own personal money laundering
838 network by employing “*money mules*” [15, 23, 43, 86, 147]. Through these two options they can “*launder*” their money,
839 which in essence means making the money earned through cybercrime activities untraceable and not able to be
840 associated with their illegal operation.
841

842 In the botnet business, there is constant need for new ways to breach the security of host systems, so that an oncoming
843 infection can take place and the target host can join the botnet. Hence, the infrastructure set of activities can also
844 include activities aiming at acquiring new means of effectively bypassing system security, which can be accomplished
845 through collaboration with vulnerability researchers, as well as malware and exploit kit developers [14].
846

847 Lastly, infrastructure also includes activities related to the maintenance of the botnet, such as the equipment/hardware
848 used by the actors and software updates.
849

850 *Human Resource Management*: *Human resource management*, handles all the issues related to the staff, such as hires,
851 lay-offs and payment of the organisation’s personnel. The personnel can include various roles, such as operation
852 of the C&C server, attack execution, customer support, individuals charged with operating the vendor profiles of
853 the marketplaces on which the products/services are listed, and individuals tasked with advertising [113, 127] those
854 products/services on several forums. Staff also includes individuals that deal with the technical needs of the botnet,
855 such as hardware maintenance and software updates. In the case of the organisation having its own money laundering
856 service, managing that group also belongs in this segment.
857

858 If the botmaster is not operating under the CaaS model, the elements that are redacted from the segment, are the
859 advertisers, marketplace profile operators, and customer support staff.
860

861 *Technology*: Technology, refers to the hardware and software necessary for the botnet’s operation, optimal performance,
862 and maintenance. In terms of software, technology can include the botnet applications, namely the application
863 running on the C&C server, the application running on each infected host, and the botmaster application, Virtual
864 Private Network applications (VPNs), cryptocurrency wallets (Table 1), software that allows for connections to the TOR
865 network, and communication applications like *Signal*, *Wickr* and *ProtonMail* (see Section 2.1). Concerning the hardware,
866 technology incorporates all of the devices utilized for the botnet’s operation, with the main ones being workstations
867 and servers (DNS and C&C). Additionally, since the technology block includes the botnet applications, it is bound to
868 also include actions which revolve around locating new vulnerabilities, developing new exploit kits, and improving on
869 the existing botnet software. As mentioned above, this can also be achieved through the collaboration with third-part
870 actors [14].
871

872 3.2.3 *Margin*. As mentioned in Section 2.2.1, the cost of carrying out the activities in the primary and support activity
873 groups, needs to be lower than the price the products or services are offered at, to create positive margin. The same
874 principle applies to botnets.
875

876 3.3 Business Model Canvas 877

878 In this section, we describe the application of the Business Model Canvas to a botnet organisation (Figure 8). As
879 discussed in Section 3.2, there is need to differentiate between the two distinct cases of the botnet being directed
880

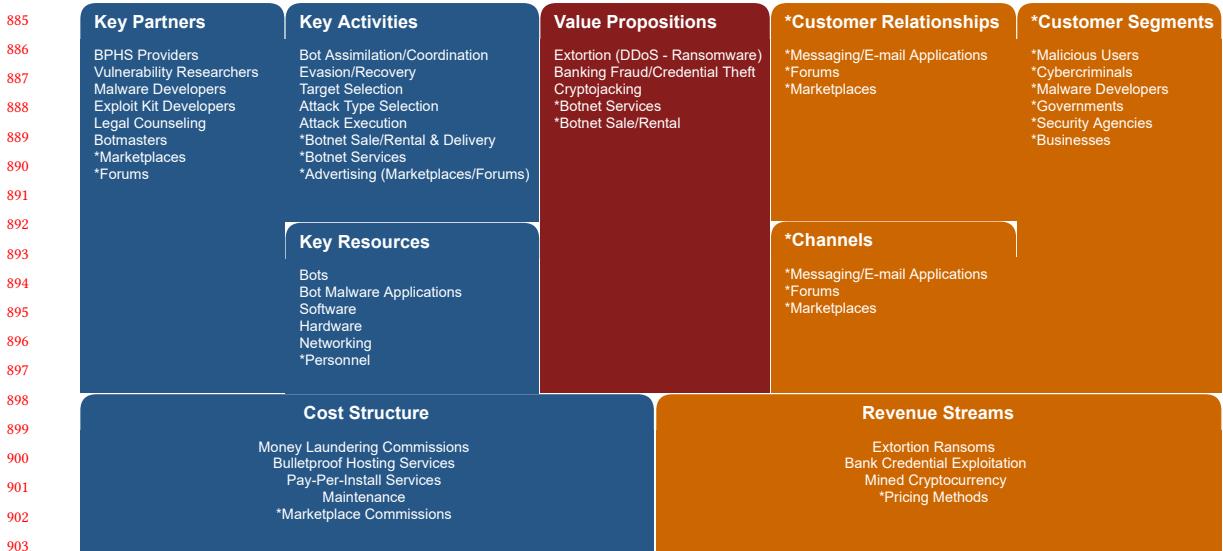


Fig. 8. Botnet Business Model Canvas (adapted from [131]). The elements preceded by an asterisk, refer to the parts of the segments that are removed in the case the botmaster is utilising the botnet privately, to serve their own personal agenda.

towards a clientele, and the case it is not. The same principles apply in this implementation as well, with all of the segments being affected. The components of the canvas can be divided into two distinct categories. The *right* (orange) side describes who the value created by the business is directed towards, how it is generated, and how it is delivered. The *left* (blue) side is focused on fulfilling the necessary requirements needed for the right side to achieve its goals. The *value propositions* segment (red) describes what the value that the business creates is (see Section 2.2.2), and sits in the middle of the canvas, acting as a link between the two sides.

3.3.1 Customer Segments: The *customer segments* of a botnet enterprise, can range from businesses interested in advertising their products or services (e.g. spam mails), corporations aiming at gaining an advantage over rivals (e.g. disruption through DDoS attacks), and ransomware developers that are trying to spread their malware, to governments and security agencies, aiming at disrupting opposing factions, but also at increasing their influence on the cyber digital world. In the absence of clients, this segment is removed in its entirety.

3.3.2 Value Propositions: The *value propositions* building block, refers to all the services and products (see Section 3.2.1), the botmaster will be able to provide to their clients, namely the customer segments. It is heavily dependant on the purposes (see Section 1) that the botnet can serve, and customer group that the products/services are directed towards (see Section 3.3.1).

A botmaster not having interest in providing their services to clients, translates into the removal of botnet sales and rentals, as mechanisms that the botnet creates value through. These mechanisms are replaced by DDoS extortion [3], ransomware extortion [141], banking fraud/credential theft [71] and cryptojacking [37, 96], which are all attacks performed privately by the botmaster themselves.

937 3.3.3 *Channels*: *Channels* refer to the utilisation of marketplaces (see Section 3.2.1) as a platform to showcase the
938 business' products/services and carry out sales, but it also includes the means used in the communication with the
939 clients, along with the delivery methods of the services and products. Botmasters, as illustrated in Section 2, use a
940 variety of communication applications to stay in contact with their clientele, as well as forums to advertise their services
941 and come in contact with potential clients. Delivery methods, due to the nature of the business and service, are mainly
942 limited to digital means. Purchasing or renting a part of the infrastructure, would translate into gaining access to
943 the C&C servers (see Section 3.2.1), while in a credential purchase scenario, the credentials would be sent via the
944 communication applications of choice (see Section 2). In the case of a buyer acquiring a botnet service such as a DDoS
945 attack or a PPC service, the delivery is the successful attack execution itself, or the increase in incoming traffic/website
946 visits, respectively.

947 The lack of customer segments (see Section 3.3.1) from the organisation's operations, results to the channels segment
948 being removed in its entirety.

949 3.3.4 *Customer Relationships*: As mentioned in Section 3.2.1, reputation and trust, play a crucial role in this type of
950 enterprise, and greatly affect its impact on the darkweb market. Hence, every botmaster strives towards maintaining
951 their reputation, not only through delivering the products and services as promised, but by inspiring trust to their clients,
952 through cultivating and preserving a personalised relationship. The degree of personalisation will differ, depending on
953 the client type (e.g. one time buyer, frequent buyer), and it will serve as stepping stone to achieving good marketplace
954 rankings and positive reviews, a concept in common with legitimate businesses.

955 Customer relationships are removed entirely from the model if there are no customer segments (see Section 3.3.1).

956 3.3.5 *Revenue Streams*: Botmasters can achieve profit following a number of pricing models for their services, depending
957 on the nature of their botnet (see Section 3.2.1). The most widely used models are one-time purchases, PPC, PPI and
958 subscription.

959 If the botmaster is neither renting nor selling the botnet, and they are not providing botnet services to customers, the
960 revenue streams mentioned above, are replaced by streams originating from DDoS extortion [3], ransomware extortion
961 [141], banking fraud/credential theft [71] and cryptojacking [37, 96], namely extortion ransoms, stolen bank credential
962 use, and mined cryptocurrency respectively.

963 3.3.6 *Key Resources*: The *key resources* building block, describes all the necessary assets required for the business
964 to operate efficiently. These assets can be the bot malware applications, personnel, software, hardware, networking
965 and more importantly, as discussed in Section 3.2.1, the bots, along with the C&C servers and all the coordination
966 mechanism components.

967 The only change to the components of this segment, in the case of no customer segments, is an alteration to the
968 personnel of the organisations, namely the personnel associated with marketplaces, forums, advertising and customer
969 support (see Section 3.2.2).

970 3.3.7 *Key Activities*: The key activities that a botnet business needs to excel at are related to the malware's propagation,
971 bot assimilation and coordination, evasion and recovery, satisfying customer needs, attack execution, delivery,
972 marketing/advertising, and maintenance. These are the priorities that the botmaster must set, in order for their business
973 to reach the highest performance possible, leading to more revenue. As analysed in Section 3.2.1, spreading the malware
974 to new hosts and assimilating more bots into the "army", leads the botnet to a state, where it can be used effectively as
975 a product or service. This is the foundation of the organisation's profits, which the main operational goal and profit

989 source of the botnet, namely making profit through botnet sales, rentals, and services, depends on. Consequently, sales,
 990 rentals, and services, also belong in this block, accompanied by the delivery of credentials or apps, as discussed in
 991 Section 3.2.1. Additionally, part of this segment, are also the processes of attack type and target selection (see Section
 992 3.2.1). The effectiveness and impact of each attack's execution, will be a determining factor, in establishing a level of
 993 reputation and trust for the organisation (e.g. bring a site offline by performing a DDoS attack of the optimal magnitude).
 994 As illustrated in Section 3.2.1, reputation plays a leading role in the growth of the enterprise, making marketing and
 995 advertising, another key activity the organisation must prioritise on [113, 127]. Lastly, the botmaster, as discussed in
 996 Section 3.2.1 needs to have evasion and fail safe mechanisms in place, to make it as challenging as possible for attackers
 997 to hinder their operations, and be able to recover in case an attempt is successful.
 998

999 Activities related to the sale or rental of the botnet, providing botnet services to clients, along with advertising in
 1000 marketplaces and forums, are not included in the segment, in the absence of customer segments (see Section 3.3.1).
 1001 Since the botmaster is the only one orchestrating the attacks and reaping the profits, they are in charge of selecting
 1002 the targets of the attacks, as well as the type of attack that is best suited, depending on the context of each operation.
 1003 As discussed in Section 3.3.5, in this case the attacks can be DDoS extortion [3], ransomware extortion [141], banking
 1004 fraud/credential theft [71] and cryptojacking [37, 96].
 1005

1006 **3.3.8 Key Partners:** Having the right partners can provide ease of operation and efficiency to a business. The same
 1007 principle applies to botnets. Increasing the revenue of an organisation is certainly affected by choosing the optimal
 1008 associates for every business compartment. These associates can be of varying legality. In botnets, this translates into
 1009 choosing the marketplaces that will serve the botnet's goals best, forums to advertise and promote the botnet's services
 1010 [113, 127], a money laundering network, legal counseling, BPHS, PPI service providers, other botmasters (see Section
 1011 3.2.1), vulnerability researchers, and lastly malware and exploit kit developers (see Sections 3.2.1, 3.2.2). The last two
 1012 types of partners, namely the vulnerability researchers and malware/exploit kit developers, can be a vital component of
 1013 the organisation, assuring that botnet will keep evolving by being more and more effective at breaching host systems,
 1014 making it both more profitable and more elusive, since defenders have to adapt yet again, in order to deal with the new
 1015 version of the malware.
 1016

1017 If the botmasters are utilising their resources privately, the only change in the partners segment is the redaction of
 1018 marketplaces, since there is no longer a need to advertise or promote the organisation, to attract potential clients.
 1019

1020 **3.3.9 Cost Structure:** This last building block describes the overall cost that is required in order to fully support the
 1021 operation of each and every business segment. It includes the costs associated with staff salaries, external partner fees,
 1022 namely marketplace commissions [61, 135] and money laundering commissions [61], Research and Development (R&D),
 1023 BPHS and PPI service providers, and lastly maintenance costs.
 1024

1025 Lastly, having no association with customers, results in the cost structure of the organisation, no longer including
 1026 marketplace commissions as a component, since marketplaces are not a part of the botnet ecosystem (see Section 3.3.8).
 1027

1028 An interesting point to be made, is regarding the raw materials of a botnet business. Raw materials play a leading role
 1029 in every business's plan of operation. Having a never ending source of raw materials, namely bots, can be extremely
 1030 valuable and can provide ease, both financial and operational, and independence to the organisation.
 1031

1032 **3.4 Discussion**

1033 In both models, one can notice similarities in some of their building blocks. These blocks may differ in title, but in
 1034 essence they describe the same functions, either individually, or in combination with others. One example is the *value*
 1035 Manuscript submitted to ACM

1041 *propositions* (see Section 3.3.2) and *revenue streams* (see Section 3.3.5) building blocks from the *business model canvas*
1042 (Figure 8), in comparison with the *monetization* segment (see Section 3.2) from the *value chain model* (Figure 4). The
1043 components of the two business model canvas blocks, are all described, among others, in the monetization segment.
1044 These similarities are proof that no matter the business model utilised, the most important element regarding both
1045 implementations, is how each individual building block is affected by the botmaster’s vision, and then consequently, in
1046 turn affects the content of the other blocks, forming the final economic infrastructure of the organisation.
1047

1049 4 BOTNET TAKEDOWNS & BUSINESS MODELS

1051 In this section, our main focus is on successful botnet takedown efforts over the years, in regards to business models.
1052 Specifically, we will be illustrating how the mechanisms targeted by these efforts, can be mapped to segments of the
1053 business models showcased in Section 3, and then discuss the challenges related to takedown attempts.
1054

1056 4.1 Botnet Takedowns and Disruptions

1058 In this section we go over some of the most notable takedowns through the years, dating all the way back to 2008, and
1059 then discuss the various challenges that cyber defense actors are met with, when mounting takedown and disruption
1060 attempts.
1061

1062 In the context of this paper, domain seizure and domain preregistering, as well as peer injection and peerlist poisoning,
1063 are considered as sinkholing methods, describing different processes individually, but providing very similar results.
1064

1065
1066 4.1.1 *Mariposa*. *Mariposa*, was a botnet originating from Spain that gained attention in 2009. It is estimated to have
1067 spread from 10 to 12 million devices, with active devices ranging from 900,000 to 1.1 million daily, and its main purposes
1068 were credential harvesting and PPI services. The botmaster utilised a central C&C server, to which they would connect
1069 using VPN software. In order to counter the threat, the *Mariposa Working Group* was formed, which managed to sinkhole
1070 the domains (seizure) used in the botnet’s infrastructure. What is interesting at this point, is the way the botmaster
1071 managed to gain back control of the botnet. They bribed an employee of the registrar they were using to register their
1072 domain names, to help them reestablish control over the bots. The bots had kept attempting to connect to the C&C
1073 server through the sinkholed domains, so when these domain became available again, the botmaster gained control
1074 once more and was able to update the bots with new C&C domain names. The most important factor that eventually
1075 led to the botmaster’s arrest, was a simple mistake from his side, after the domains were sinkholed. He attempted to
1076 connect to the C&C server without using the VPN software, giving away his Internet Protocol (IP) address, which led
1077 to his identification and arrest by the Spanish authorities [31, 89, 132].
1078

1079
1080 4.1.2 *Grum*. *Grum* was considered as the third largest spam botnet in 2012, along with *Lethic* and *Pushdo/Cutwail*. It is
1081 estimated to have had around 560,000 to 840,000 infected computers under the command of the botmasters in 2010,
1082 which in that year translated into 39.9 billion spam messages, almost 26% of the overall spam volume worldwide. Bots
1083 utilised hardcoded IP addresses to coordinate with the main and secondary C&C servers, which contributed towards
1084 the uncovering of their geolocation by researchers from *FireEye*, a cyber-security company. Through the cooperation of
1085 ISPs located in Russia, Panama and the Netherlands, which were providing hosting services to Grum, the servers were
1086 shutdown. The botmasters then tried setting up a backup channel in Ukraine, but these servers were shortly shut down
1087 as well, bringing the botnet down [75, 98].
1088

1093 4.1.3 *Conficker*. The *Conficker* worm was an immense cyber threat in 2008 and 2009, with millions of infected
 1094 computers. Its purposes were spam and spreading malware that imitated antivirus software. The threat was so large,
 1095 that at some point *Microsoft* resorted to offering a reward of \$250,000 for any information on the individuals responsible
 1096 for the botnet's operation, which has still not been collected to date[115]. Microsoft also created the *Conficker Working*
 1097 *Group (CWG)*, which along partners from the private sector, such as *Facebook*, *Cisco*, *IBM*, *Verisign* and many domain
 1098 registrars and registries, with non-profit groups such as *The Shadowserver Foundation* and *Internet Corporation for*
 1099 *Assigned Names and Numbers (ICANN)*, constituted the task force that took up the task of taking the botnet down [55].
 1100 The takedown efforts, which were the outcome of the cooperation between a large number of countries, were successful
 1101 through reverse-engineering the malware and gaining insight on the DGA's properties. Recreating the DGA allowed
 1102 for the 50,000 domains, that the bots could potentially use daily to connect to the C&C servers, to be preregistered,
 1103 making them unavailable for the botnet to utilise, which resulted in loss of bot control by the botmasters [99].
 1104

1105 4.1.4 *Citadel*. *Citadel* was creating revenue for the botmasters through bank account credential theft. It is estimated
 1106 that the botnets stole over \$500 million, with infected devices reaching 5 million, and spanning over 90 countries. A part
 1107 of why the network managed to reach such a high number of infections, was the fact that the cybercriminals behind
 1108 *Citadel* were distributing pirated Windows Operating System (OS) versions, in which the malware was embedded. In
 1109 2013, after the cooperation of law enforcement, tech companies and banks, from over 80 countries, with main actors
 1110 the Federal Bureau of Investigation (FBI) and Microsoft, the *Citadel* network of botnets was brought down, after seizing
 1111 the network's servers [10, 116].
 1112

1113 4.1.5 *Shylock*. The *Shylock* botnet's activity was noticed for the first time in 2011. It was a banking trojan with
 1114 credential harvesting capabilities, targeting clients of several banks, located all around the world, but with most
 1115 infections taking place in the UK. It is estimated to have infected at least 30,000 devices running the Windows OS up
 1116 until 2014, when its operation was disrupted. Through the cooperation of both law enforcement organisations, such as
 1117 *Europol's European Cybercrime Centre (EC3)*, the *FBI*, and UK's *National Crime Agency (NCA)* and private organisations,
 1118 such as *Dell SecureWorks* and *Kaspersky Lab*, the C&C servers, as well as the domains used by the bots to connect to
 1119 these servers, were seized, which led to the botnet's disruption [40, 68].
 1120

1121 4.1.6 *GameOverZeus*. *GameOver Zeus* was a botnet utilising the *Zeus* malware kit [69] and is considered as one of
 1122 the most successful botnets. At its peak, it managed to spread to over one million devices and caused more than \$100
 1123 million in losses. Its main purpose was banking and other credential theft, and it spread through spam e-mails and
 1124 phishing messages. The efforts towards its takedown began in 2014, led by the *FBI*, under the title "Operation Tovar", and
 1125 focused on disrupting the coordination mechanism of the botnet. The plan firstly included injecting law enforcement
 1126 controlled nodes in the botnet, in order to poison the peerlist and replace the legitimate nodes with the injected ones
 1127 [142], redirecting the bots to sinkhole-nodes. One more mechanism that stood in the way of the takedown, was the
 1128 backup channel the botmasters had in place, which was based on the use of a DGA. This channel was dealt with before
 1129 carrying out the takedown, and it was achieved through preregistering the domain names that would be generated by
 1130 the bots, to reestablish communication with the C&C server in case of a takedown attempt. Subsequently, through the
 1131 cooperation of Internet Service Provider (ISP)s, the nodes of the network that were acting as proxies between the C&C
 1132 server and the bots, were disabled, severing the communication. Lastly, they injected a new node which replaced the
 1133 C&C server, giving over control of the botnet to the takedown actors [95].
 1134

1145 4.1.7 *Ramnit*. *Ramnit* was a botnet that focused on user credential harvesting and managed to infect around 3.2 million
1146 devices all over the world. Its takedown was achieved in 2015, with *Microsoft*, *Symantec*, *Anubis Networks*, *Europol* and
1147 law enforcement entities from the UK, Italy, the Netherlands and Germany. The success of the takedown came as result
1148 of effectively disrupting the communication between the C&C servers and the bots, by shutting down the C&C servers,
1149 and seizing 300 domains used by the botmasters [41, 59]. Unfortunately, the success did not last, due to the fact that the
1150 individuals responsible for the botnet's operation were not apprehended by law enforcement. A few months after the
1151 takedown, the botnet resurfaced [70], and is still operational to this day [105].
1152

1153
1154 4.1.8 *Dorkbot*. The *Dorkbot* botnet, also known as *NgrBot*, was discovered in 2011, and it spread through USB drivers,
1155 instant messaging apps and social networks. Its main purposes were credential theft, DDoS attacks, spam, and serving
1156 as a foundation for further malware infections on the host. In the last year before it was brought down, it was considered
1157 to have infected more than 1 million devices. With law enforcement agencies collaborating with partners from the
1158 industry, the botnet's takedown was finally achieved mainly through domain seizure [65, 117].
1159

1160
1161 4.1.9 *Avalanche*. After a large ransomware attack in Germany in 2012 was traced back to the *Avalanche* botnet, the
1162 German police initiated efforts towards its takedown. *Avalanche*'s main purpose of operation was phishing, malware
1163 attacks and money mule recruiting. Over the course of its operation (2008-2016), it is estimated to have caused hundreds
1164 of millions of euros in damages worldwide, and that is due to the many malware families it has been associated with. In
1165 a joint four year long effort from organisations such as the *FBI*, *Europol*, *Interpol*, security companies like *Symantec* and
1166 some domain registries that the *Avalanche* group was using, it was eventually taken down in 2016. It was achieved
1167 through the reverse-engineering of the malware, the sinkholing of the domains identified (seizure and preregistering),
1168 which were around 800,000, as well as C&C server seizure and shutdown. This course of action finally led to the
1169 successful identification of the botnet's infrastructure and its physical servers [42, 120, 137].
1170

1171
1172 4.1.10 *Andromeda*. The *Andromeda* malware botnet surfaced in 2011 and has been associated with more than 80
1173 different malware variants. After a coordinated operation by *Europol*'s EC3, the *FBI*, *Microsoft*, *ESET* and a number of
1174 other organisations, it was finally taken down in 2017. The foundation for the success of the operation, was the analysis
1175 of the *Wauchos* malware family, on which the *Andromeda*'s infrastructure had been built on, over the course of 18
1176 months. This allowed for the identification and seizure of approximately 1500 domain names, that the bots were using
1177 to connect to the C&C server, which in just 48 hours resulted in visits from 2 million IP addresses from 223 countries,
1178 illustrating the magnitude of the botnet's impact [120, 136].
1179

1180
1181 4.1.11 *Mirai*. The *Mirai* IoT botnet surfaced in 2016 and is considered one of the most notable botnets of the last few
1182 years. At its peak, its ranks consisted of 650,000 infected devices and could achieve a record-breaking DDoS attack of
1183 approximately 1TBps, while other botnet services ranged from 1GBps to 30GBps. The way the *FBI* managed to finally
1184 discover the identities of the *Mirai* actors, was through the anonymous accounts and aliases that these individuals were
1185 using at the time on platforms such as *Hackforums*, in correlation with information they were publicly listing on social
1186 platforms such as *LinkedIn* [76, 145].
1187

1188
1189 4.1.12 *Kelihos.E*. The *Kelihos* botnet had been active since 2010, with many variants surfacing over the years and
1190 various takedown efforts against them. The *Kelihos.E* variant, was responsible for millions of spam emails daily, phishing
1191 attacks, and malware delivery, including banking trojans. It was successfully taken down in April 2017, in a joint
1192 effort by *The Shadowserver Foundation*, the *FBI* and researchers from *CrowdStrike*. The takedown attempt focused the
1193

1197 disrupting the P2P network through sinkholing both the peers and the C&C backup domains, and by seizing and
 1198 disrupting the C&C server infrastructure, which was following a hybrid P2P architecture [87, 119]. The individuals
 1199 responsible for the botnet's operation are considered to have been located in Russia.
 1200

1201 **4.1.13 Necurs.** In 2020, the *Necurs* botnet was one of the biggest cyber threats worldwide. It had a wide variety of
 1202 purposes, including stock scams, fake pharmaceutical spam email scams, dating scams, along with credential theft,
 1203 cryptomining, as well as financial malware and ransomware distribution. *Microsoft*, along with a number of private
 1204 and public partners across 35 countries, after an analysis on the DGA used by the bots to communicate with the C&C
 1205 servers, were able to effectively precalculate approximately 6 million domain names, which were to be generated by the
 1206 bots in the upcoming 25 months. These domains were reported to the registries they belonged, so that their registration
 1207 could be blocked. Furthermore, Microsoft's legal team managed to get a court order from the *U.S. District Court*, allowing
 1208 for the takeover of preexisting C&C servers, operating under U.S. jurisdiction. The individuals responsible for the
 1209 botnet's operation are considered to have been located in Russia [16, 24].
 1210

1211 **4.1.14 TrickBot.** *TrickBot* was discovered in 2016, as a bank credential theft botnet, but through the years it has been
 1212 also purposed as a harvester of various credentials, such as Outlook, and malware dropper, with the *Ryuk* malware [84]
 1213 being a prime example. Its main spread method is through spam campaigns containing embedded URLs or malicious
 1214 attachments, and was through the *Emotet* botnet's operation, until the botnet's takedown in January 2021 4.1.15, which
 1215 would drop the *TrickBot* malware [85]. In October 2020, Microsoft, with the assistance of legal authorities, took down
 1216 19 U.S. IP addresses used by the botnet, and provided a configuration file to the infected hosts that would stop their
 1217 devices from connecting to the botnet control points. After some help from the *Emotet* botnet and through rotating the
 1218 C&C servers' IPs, *TrickBot* continued spreading to more hosts. The botmasters also implemented the usage of Tor onion
 1219 services for coordination purposes, increasing the resilience of the servers. Microsoft, along with their global partners,
 1220 then took more action and with the help of hosting providers managed to successfully shut down 120 of the 128 servers
 1221 of the botnet, which also included two C&C servers (94% of the infrastructure), that were known to be operational at
 1222 the time, along with 7 IoT devices that were being used as assisting control points for the botnet [63]. Unfortunately,
 1223 the efforts were ultimately unsuccessful in putting an end to the botnet's operation. Now (February 2021), months after
 1224 the takedown attempt, and after the *Emotet* botnet takedown (see Section 4.1.15), *TrickBot* has managed to replace
 1225 *Emotet*, and climb to the top of the malware families ranking [105], still making a big impact on the cyber world.
 1226

1227 **4.1.15 Emotet.** *Emotet*, active since 2014, when it started as a banking trojan, had managed to become one of the
 1228 most dangerous malware [44], as a means for cybercriminals to buy access to already compromised devices, namely a
 1229 Malware-as-a-Service PPI botnet. This service was available for hire, offering the choice to clients to exploit the hosts
 1230 they had bought access to, however they saw fit. The way it propagated was through malicious attachments, such
 1231 Word documents and PDF files, included in automated emails, which in 2020-2021, among others, also translated into
 1232 COVID-19 information emails. *Emotet*'s infrastructure was composed of hundreds of control servers throughout the
 1233 world, tasked with different roles, offering versatility and resilience against takedown efforts. "Operation Ladybird",
 1234 involved law enforcement authorities from the Netherlands, Germany, France, the United Kingdom, the United States,
 1235 Canada, Ukraine and Lithuania through *Europol* and *Eurojust*, along with the *Dutch National Cyber Security Center*,
 1236 non-profit organisations and various private parties. After fully understanding how the botnet infrastructure was laid
 1237 out, the authorities, through coordinated action, simultaneously seized control of the network, physically seizing servers,
 1238 stolen data, such as email credentials of infected hosts, cash and computer equipment [44, 77, 107].
 1239

1249 4.1.16 *Other notable takedowns.* Some notable efforts against botnet operations over the years, have been on *DNSChanger*
 1250 (2011) by seizing the DNS servers on which the whole infrastructure was founded [74], *Nitol* (2012) by seizing the
 1251 3322.org domain used for the coordination of the bots, and eventually sinkholing them [81], *Bredolab* (2010) by seizing
 1252 the C&C servers, and *Torpig* (2009) by reverse engineering, analysing the DGA utilised by the botnet, and using it to
 1253 preregister domains the C&C server was bound to use in the future. The *Ozdok* (2009) takedown was a collaborative
 1254 effort from the company *FireEye*, a number of ISPs, and domain registrars, using domain seizure and preregistering
 1255 as the main methods, while the *Coreflood* (2011) [73] botnet was eventually taken down through domain seizure
 1256 and sinkholing [31]. *Rustock* (2011), which was a spam botnet of significant impact, was finally taken down through
 1257 seizure of the physical servers, following a civil legal process. *Waledac* (2010) was taken down through domain seizure,
 1258 sinkholing, and peerlist poisoning, while *Pushdo/Cutwail* (2010) was briefly disrupted through the cooperation of ISPs
 1259 that were in control of a large number of the C&C servers [31]. The *Srizbi* botnet (2008) takedown attempt focused
 1260 on shutting down the C&C servers of the network, by cooperating with the controlling ISPs, and then preregistering
 1261 domain names after reverse engineering the botnet's DGA, but unfortunately the botmasters managed to gain control
 1262 though that same DGA [4]. In 2014, the *ZeroAccess* botnet was the target of a coordinated operation from both the
 1263 private and public sector, which disrupted the botnet through identifying IPs used by the network and blocking all
 1264 communication with them, as well as seizing the domains utilised by the botmasters [21]. In 2013, the *Kelihos.C* botnet
 1265 variant was taken down by *CrowdStrike*, after a successful operation utilising peer injection and peerlist poisoning
 1266 [138, 142]. Lastly, *3ve* was an ad fraud botnet that managed to infect more than 1.7 million hosts, and its estimated daily
 1267 profit ranged from \$3 to \$5 million daily. In 2018 the *FBI* managed to takedown the network, through sinkholing 31
 1268 domains (seizure), and by getting control of 89 physical servers. “*Operation Eversion*”, as it was dubbed, included the
 1269 cooperation of both the private sector and law enforcement agencies [144].
 1270

1271 4.2 Takedown Methods and Business Model Relations

1272 As can be noticed on Table 3, the main methods that have been used in takedowns over the years, in the majority of the
 1273 cases, are domain sinkholing, through domain seizure and/or domain preregistering, seizure of the infrastructure's
 1274 physical servers, shutdown of the servers and peer sinkholing through peer node injection and/or peerlist poisoning
 1275 (in the case of P2P or hybrid botnets e.g. 4.1.6, 4.1.12). These methods are often used in combination with one
 1276 another. An overview of the takedown methods, in relation to the business models, can be seen on Table 4.

1277 What is of value at this point, is how these methods can be translated into building blocks of the business models
 1278 analysed in Section 3.

1279 *Value Chain Model:* In regard to the *Value Chain Model* (see Section 3.2, Figure 4), domain sinkholing, through domain
 1280 preregistering and/or seizure, is connected to *assimilation*, since it affects the bot supply through bringing down the
 1281 coordination mechanism of the network. Seizing or shutting down the physical C&C servers (or DNS servers), can both
 1282 be mapped to *technology* and *assimilation*, because they can be associated with the hardware, broadband (shutdown),
 1283 bot supply and coordination, as well as BPHS providers. Peer sinkholing, through node injection or peerlist poisoning
 1284 [142], can be applied to botnets following a P2P or hybrid architecture. This method is connected to the *assimilation*,
 1285 due to the fact that it essentially targets the bot supply and coordination mechanism, but also the *technology* block
 1286 since it is related to the bot application. Lastly, in the case of *Mirai* (see Section 4.1.11), metadata and data from the
 1287 anonymous profiles that the botmaster was using in the context of their operation, can be correlated to *monetization*,
 1288 which includes platforms such as forums and marketplaces.

Botnet	Year	Takedown/Disruption Methods	Reference
Srizbi	2008	Domain sinkholing (preregistering), server shutdown	4.1.16
Mariposa	2009	Domain sinkholing (seizure)	4.1.1
Torpig	2009	Domain sinkholing (preregistering)	4.1.16
Ozdok	2009	Domain sinkholing (preregistering and seizure)	4.1.16
Bredolab	2010	Server shutdown and seizure	4.1.16
Waledac	2010	Domain sinkholing (seizure), peer sinkholing (peerlist poisoning)	4.1.16
Pushdo/Cutwail	2010	Server shutdown	4.1.16
DNSChanger	2011	DNS server seizure	4.1.16
Coreflood	2011	Domain sinkholing (seizure)	4.1.16
Rustock	2011	Server seizure	4.1.16
Nitol	2012	Domain sinkholing (seizure)	4.1.16
Grum	2012	Server shutdown	4.1.2
Conficker	2012	Domain sinkholing (preregistering)	4.1.3
Citadel	2013	Server seizure	4.1.4
Kelihos.C	2013	Peer sinkholing (peer injection and peerlist poisoning)	4.1.16
ZeroAccess	2014	Domain seizure/sinkholing	4.1.16
Shylock	2014	Domain sinkholing (seizure) and server seizure	4.1.5
Gameover Zeus	2014	Peer sinkholing (peer injection and peerlist poisoning), server shutdown, domain sinkholing (preregistering)	4.1.6
Ramnit	2015	Domain sinkholing (seizure), server shutdown	4.1.7
Dorkbot	2015	Domain sinkholing (seizure)	4.1.8
Avalanche	2016	Domain sinkholing (seizure and preregistering), server seizure and shutdown	4.1.9
Andromeda	2017	Domain sinkholing (seizure), server seizure and shutdown	4.1.10
Mirai	2017	Anonymous profile data and metadata	4.1.11
Kelihos.E	2017	Peer and domain sinkholing, server shutdown and seizure	4.1.12
3ve	2018	Domain sinkholing (seizure), server seizure	4.1.16
Necurs	2020	Domain sinkholing (preregistering), server seizure	4.1.13
TrickBot	2020	Server shutdown	4.1.14
Emotet	2021	Server seizure	4.1.15

Table 3. The 28 most notable botnet takedown attempts from 2008 to 2021.

Business Model Canvas: Following the same principles applied in the previous paragraph, in the case of the *Business Model Canvas* (see Section 3.3, Figure 8), domain sinkholing via preregistering and/or seizure, points to the *key resources* and *key activities* blocks, targeting bot assimilation and coordination. C&C (or DNS) server seizure or shutdown, are both related to *key resources*, *key activities* and *partners*, since apart from disrupting the bot assimilation and coordination, they also aim at the hardware and networking of the infrastructure, affecting BPHSs in the process. Peer sinkholing, through node injection or peerlist poisoning, also affect bot assimilation and coordination, and are additionally directly related to the bot application, hence they are also mapped to the *key activities* and *key resources* segments. Finally, the case of *Mirai* can be linked to the *key activities* and *channels* blocks, since the specific takedown correlates to the profiles of platforms such as forums and marketplaces.

4.3 Takedown Challenges

Taking down botnets has repeatedly proven to be a challenging and elusive task. Organisations mounting takedown efforts, are met with issues mainly related to lack of resources, jurisdiction, especially when it comes to operations carried out in foreign countries, legal framework constraints [146], and coordination with other organisations. On the contrary, it is easier for botmasters to invest in a resilient infrastructure, that will make hostile attempts against them

Takedown Method	Value Chain Model	Business Model Canvas
Domain sinkholing (seizure or preregistering)	Assimilation	Key Resources, Key Activities
Server seizure (C&C or DNS)	Assimilation, Technology	Key Resources, Key Activities, Partners
Server shutdown (C&C or DNS)	Assimilation, Technology	Key Resources, Key Activities, Partners
Peer sinkholing (peer node injection or peerlist poisoning)	Assimilation, Technology	Key Resources, Key Activities
Anonymous profile data and metadata	Monetization	Key Activities, Channels

Table 4. Takedown methods characteristics and issues.

even more challenging. For this reason, efforts that are the product of cooperation between different organisations, tend to be quite more efficient. This is not only due to the increased resources available, but because these collaborations allow for the easier utilisation of different methods, namely civil, legal, and technical. These organisations can be security and law enforcement agencies, ISPs, domain registrars and registries, legal authorities, voluntary working groups, and large corporations from all over the globe. Despite each organisation's individual underlying motives, be it cyber defense, profit, marketing/public relations or even plain goodwill, they share the common goal of taking down botnets, and they are willing to pool their resources towards that cause, increasing the chances of success [2, 31].

What is of interest at this point, is the overall difficulty and issues (see Table 5) that can arise in a takedown operation, depending on the methods employed. As illustrated in the previous section (see Tables 3 and 4), in most of the takedown attempts, success is accomplished through a combination of methods. Combining technical and legal methods, has proven to be more effective (e.g. Waledac, Rustock, Coreflood, Kelihos) than only taking the technical approach (Torpig, Ozdok, Pushdo) or only the legal approach (Ozdok initial takedown attempt) [31]. Some of the methods, are more challenging to implement than others, and can offer a varying degree of contribution towards the end goal.

4.3.1 Domain Preregistering & Seizure. Domain preregistering, can be employed against botnets utilising the DNS protocol in their infrastructures, and leads to the bots being sinkholed. DNS can be a part of the main coordination mechanism of the bots and/or the backup channel, which bots will use in case the main mechanism becomes the target of an attack. Both of these mechanisms can come in the form of a DGA, which dynamically generates the domains, or domains hardcoded in the bot binary that the bots use to acquire the C&C information. In many cases, discovering these domains requires the reverse engineering of the malware, which raises the technical difficulty of takedown operations.

Another method that is commonly used in takedown operations, is sinkholing through the seizure of already registered domains, which in most cases, presents the same challenge as domain preregistering, namely the malware's reverse engineering. In this case, the main difference is that this method needs to be accompanied by non-technical actions. Seizing existing domains, requires legal warrants and/or the cooperation of domain registrars. Private parties providing DNS services to the botmasters very often do not fall under the jurisdiction of the takedown actors, and can be located all over the globe. Coordination with LEAs and other partners from different countries is vital in these situations, in order for legal action to be plausible. However, legal action at that stage is sometimes rendered redundant because some private entities such as ISPs and domain registrars, sometimes after being informed of the situation, namely the fact that one of their users is utilising their services as a stepping stone to commit cyber crimes, choose to cooperate and contribute towards the takedown of the botnet.

4.3.2 Server Shutdown & Seizure. Disabling the C&C servers of a botnet infrastructure can be achieved in two ways, by physically seizing them or disconnecting them through the ISPs. Physical seizure requires legal procedures, in order to acquire the necessary warrants, and is also heavily dependant on the server geolocation. Since the servers can be spread

1405 out all across the globe, which is quite common, there are different jurisdictions and legal frameworks, that can surround
 1406 a takedown operation. This fact makes cooperation between countries and organisations vital for an operation to be
 1407 successful. This can also be the case, when attempting to disable the C&C servers through their ISPs. In this scenario
 1408 the takedown actors can contact the ISPs, and try to acquire their assistance in taking the servers offline. Sometimes
 1409 this approach does not yield any results, making legal warrants necessary. As with domain and server seizure, this can
 1410 lead to jurisdiction issues, when the servers are located in various countries, making the takedown operation impossible
 1411 to carry out without the cooperation of the corresponding LEAs and legal authorities. Furthermore, disconnection
 1412 through the provider, when compared to physical seizure of the server, can prove easier to accomplish, because in some
 1413 cases the provider might be willing to cooperate, removing the legal barrier confining the operation.

1414
 1415
 1416
 1417 **4.3.3 Peer Injection & Peerlist Poisoning.** In the case of a botnet utilising P2P communication in its infrastructure, be
 1418 it the main coordination mechanism, the backup channel, or both, the methods that can be employed are sinkholing
 1419 through peerlist poisoning, where fake nodes are entered in the list of peers embedded in the botnet malware, and
 1420 via peer injection (sybil attacks) [142], where fake nodes controlled by the takedown actors are added to the network.
 1421 Furthermore, these methods are used in combination, like in the cases of the *GameoverZeus* (see Section 4.1.6) and
 1422 *Kelihos.C* (see Section 4.1.16) botnets, both contributing towards directing the bots to specific nodes controlled by
 1423 the takedown operation. Both of these methods' implementations are challenging in regard to their technical aspect,
 1424 requiring the reverse engineering of the malware in order to be able to effectively inject a controlled node or retrieve the
 1425 list of peers from the bot malware, and do present legal issues, hence the legal framework surrounding the takedown
 1426 operation must always be taken into account.

1427
 1428
 1429
 1430 **4.3.4 Implementation & Legality.** After the aforementioned methods have been executed successfully, depending on
 1431 the implementation, as well as the botnet targeted, the legality of each takedown operation can vary [18]. For example,
 1432 if law enforcement operated a server in the generated sinkhole, with which the bots would connect instead of the C&C
 1433 server, and the botnet's purpose was credential theft, then the takedown actors could end up acquiring private user
 1434 information. Furthermore, in some implementations, the takedown actors decide to gain remote access to the infected
 1435 devices for remediation purposes (e.g. *Coreflood*, *Citadel*); this can also raise legal and ethical issues [32, 146].

Takedown Method	Reverse Engineering	Legal process
Domain sinkholing (preregistering)	○	○
Domain sinkholing (seizure)	○	○
Server seizure (C&C or DNS)	○	●
Server shutdown (C&C or DNS)	○	○
Peer sinkholing (peer injection or peerlist poisoning)	●	○
Anonymous profile data and metadata	○	○

1436 Table 5. Takedown operation challenges. Depending on the method of choice: ○= Not necessary, ●= Depends on the case, ●=
 1437 Necessary.

1448 1449 1450 1451 **4.4 Observations and Steps Ahead**

1452 From our analysis in Section 4.2, it can be observed that the majority of the takedown methods, can be associated with
 1453 the *assimilation* and *technology* segments of the *Value Chain Model*, as well as the *key resources* and *key activities* blocks
 1454 from the business model canvas. It is also clear, that takedown and disruption efforts, have not been targeting elements
 1455 Manuscript submitted to ACM

of the botnet infrastructure that can be strictly related to its financial framework (apart from the *Mirai* isolated incident, see Section 4.1.11), such as the *firm infrastructure* and *monetization* segments of the Value Chain Model. Shifting focus towards these segments, will give takedown efforts a new dimension, by directly aiming at the element that is located in the center of every business, profit. Additionally, such an approach would contribute in alleviating some of the issues takedown operations are met with, such as reverse engineering of the malware, and legal challenges (see Section 4.3.4). We believe that further researching the mechanisms that are related to the revenue creating process of a botnet, with some prime examples being promotion of the products and services, along with reputation and trust towards the botmasters/vendors, has the potential to hit at the heart of these cybercriminals' operations. Hence, we argue that future research should also include this direction, in an effort to leverage potential weaknesses related to botnets' profit generation. Specifically, we believe that exploring the darkweb selling platform framework [50], which is currently supporting the botnet trading market, is a solid starting point, since the operation of these platforms is undeniably linked with the aforementioned mechanisms.

5 RELATED WORK

In this section we go over notable existing research associated with botnets, with a focus on their economic aspect.

5.1 Botnets

Silva et al. [124] survey botnets in terms of evolution, life-cycle, architectures, detection, evasion and defense. *Khattak et al.* [71] take a similar approach, and create taxonomies of botnet behaviour, detection mechanisms, and defense mechanisms. *Rodríguez et al.* [113] present a survey on botnet research, map the life cycle of botnets, and then create a taxonomy of botnet research based on this life-cycle.

In addition to the more generic research on botnets, there are also many efforts focusing on specific botnet aspects, with detection being among the main ones. The work in this field presents a lot of variety. *Alieyan et al.* [5] survey detection methods utilizing the DNS protocol. *Garcia et al.* [49] present a comparison of three botnet detection methods, utilizing a large, real-world, labeled botnet traffic dataset, and evaluate their performance. *McDermott et al.* [94] utilize deep learning in combination with word embedding, to detect botnet activity in IoT devices. The developed model is evaluated using data from attacks associated with the *Mirai* botnet. Lastly, *Prasad et al.* [110] take a bio-inspired approach and propose a model efficient in detecting application layer DDoS attacks.

There is also research focusing on the analysis of specific botnets and their characteristics, such as the work of *Antonakakis et al.* [8] on the *Mirai* botnet. This type of research is in certain occasions carried out in the context of operations against the botnet, with the works of *Stone-Gross et al.* on the *Torpig* [129] and *Pushdo/Cutwail* [130] botnets as two notable examples. On the topic of takedowns there are also more generic approaches, such as the work of *David Dittrich* [31], who illustrates the elements associated with a botnet takedown, and then presents case studies of past takedowns, along with the observations that resulted from these operations. Additionally, *Nadji et al.* [99] propose an analysis and recommendation system called *rza*, which aims to carry out post-mortem analysis of botnet takedowns, but also provide insight on how future takedown operations could be performed. Under the same research umbrella, the legal and ethical aspects of hostile operations against botnets have also been addressed by researchers, such as the works of *Dittrich et al.* [32] and *Sam Zeitlin* [146].

Year	Title	Keywords	Reference
2009	Your Botnet is My Botnet: Analysis of a Botnet Takeover	takedown, Torpig	[129]
2010	A case study in ethical decision making regarding remote mitigation of botnets	ethical and legal challenges	[32]
2012	So You Want to Take over a Botnet	takedowns, case studies	[31]
2013	Beheading Hydras: Performing Effective Botnet Takedowns	takedown analysis, takedown methods	[99]
2013	Botnets: A survey	survey, history, architectures, life cycle, detection, evasion, defense	[124]
2013	Survey and Taxonomy of Botnet Research through Life-Cycle	survey, taxonomy, architectures, detection, life-cycle, purpose and attacks, obfuscation, marketing	[113]
2014	A Taxonomy of Botnet Behavior, Detection, and Defense	taxonomy, architectures, obfuscation, life-cycle, detection, evasion, purposes	[71]
2014	An empirical comparison of botnet detection methods	detection, dataset, evaluation, comparison	[49]
2015	Botnet takedowns and the fourth amendment	takedown legal challenges	[146]
2017	Botnet command and control architectures revisited: Tor hidden services and fluxing	obfuscation, Tor, architectures, DNS	[7]
2017	A survey of botnet detection based on DNS	survey, detection, DNS, machine learning, neural networks	[5]
2017	Understanding the mirai botnet	botnet analysis, Mirai, IoT, DDoS, DNS, honeypots	[8]
2018	Botnet detection in the internet of things using deep learning approaches	detection, deep learning, Mirai, IoT, DDoS, word embedding, dataset	[94]
2020	BARTD: Bio-inspired anomaly based real time detection of under rated App-DDoS attack on web	detection, bio-inspired, DDoS attacks	[110]

Table 6. Notable research on various botnet-related topics

5.2 Botnet Economics

With financial incentives being the main motivation behind botnet businesses, researching the economic infrastructure, in an effort to gain a better understanding of how botmasters earn revenue, can prove to be critical in disrupting botnet operations. We argue that this can lead to the discovery of weak points, the exploitation of which would add a new weapon to the defenders' arsenal against botnets. There have been efforts towards both gaining insight on the economic infrastructure behind botnets, and inventing new disruption methods, based on economy related elements of botnets' operations (see Table 7).

Ford and Gordon [46] focus on analyzing the economic incentive behind spreading malicious applications such as spyware and adware, credential theft and sale, DDoS attacks and botnet sale/rent, that can be used to generate revenue for botmasters. They argue that emphasizing disruption efforts on the business models utilised by botmasters, shows significant promise.

Friess and Ayccock [47] study credential theft and how this botnet activity is used and sold in the black market. They focus on the financial motives behind creating and maintaining this type of botnet, how it creates revenue, and lastly touch upon defensive mechanisms against it.

Li et al. [83] proposed a model which is based on the utilization of honeypots in order to create virtual bots. Every botnet C&C server handles a certain number of bots. By having a substantial percentage of that number be virtual/fake

1561 bots, they introduced a level of uncertainty regarding the botnet's effectiveness in an attack, which in essence lowers
 1562 the quality of the botnet services and their appeal to the potential clients. This can eventually lead to a significant profit
 1563 decrease for the botmaster.

1564 Year	1565 Title	1566 Keywords	1567 Reference
1568 2007	1569 Cent, five cent, ten cent, dollar: Hitting botnets where it really 1570 hurts	1571 spyware, adware, credential theft, 1572 DDoS, business model, disruption	1573 [46]
1574 2008	1575 Black Market Botnets	1576 credential theft, business model	1577 [47]
1578 2009	1579 Botnet Economics: Uncertainty Matters	1580 honeypots, reputation, honeypots, 1581 disruption	1582 [83]
1583 2011	1584 Click trajectories: End-to-end analysis of the spam value chain	1585 spam, value chain, captive botnets, 1586 real-time data	1587 [80]
1588 2011	1589 The underground economy of spam: A Botmaster's perspective 1590 of coordinating large-scale spam campaigns	1591 Pushdo-Cutwail botnet, spam, fo- 1592 rum, takedown	1593 [130]
1594 2013	1595 Modeling the Economic Incentives of DDoS Attacks: Femtocell 1596 Case Study	1597 DDoS, economic model	1598 [118]
1599 2014	1600 The Botnet Revenue Model	1601 supply chain, disruption, revenue 1602 model	1603 [14]
1604 2014	1605 Toward a Monopoly Botnet Market	1606 botnet monopoly, disruption, eco- 1607 nomic model	1608 [82]
1609 2016	1610 Stress Testing the Booters: Understanding and Undermining 1611 the Business of DDoS Services	1612 DDoS, payment methods, disrup- 1613 tion, PayPal	1614 [67]
1615 2018	1616 Business Model of a Botnet	1617 DDoS, credential theft, spam, click 1618 fraud, cost-revenue ratio, business 1619 model	1620 [111]

Table 7. Botnet economics research

1585
 1586
 1587
 1588
 1589 *Levchenko et al.* [80] present an overview of the overall spam botnet value chain. They use three months of real-time
 1590 data from captive botnets, spam feeds, and spam advertised URLs to gain an understanding of the botnet infrastructure.
 1591 They also identified sites that provide botnet services and carried out purchases to gain information about the business
 1592 economy.

1593
 1594 *Stone-Gross et al.* [130] acquired a number of CnC servers of the *Pushdo/Cutwail* botnet, in an effort to identify the
 1595 characteristics of spam botnets of that magnitude. Furthermore, they performed an analysis on the *Spamdot.biz* forum,
 1596 a forum dedicated to spam related activities, giving insight on the botmaster's perspective.

1597
 1598 *Segura and Lahuerta* [118] attempt to assess the economic motivation behind DDoS attacks. They present a model
 1599 mapping the financial incentives of botmasters, using data collected both from direct communication with botmasters
 1600 and from past DDoS extortion incidents.

1601
 1602 *Bottazzi and Me* [14] propose a model that describes the revenue making process of a botnet. In this model the
 1603 ecosystem of a botnet's operation is divided into four different segments, which together form the *supply chain*. They
 1604 analyze how these different parts of the chain interact with one another and how their attributes change over time,
 1605 affecting the botmaster's revenue. Lastly, they conclude that attacking individual links of the supply chain, could be
 1606 effective in hindering a botnet's operation.

1607
 1608 *Li and Liao* [82] suggest going after the smaller and newer vendors in order to turn the botnet market into a monopoly.
 1609 They argue that this may prove beneficial for defenders, because according to their economic model, this will demotivate
 1610 new botmasters from entering the market and increase the price of these services. This state of the market will ultimately
 1611 lower the appeal of these services to the clients, reducing the overall output of the botnet industry.

1613 Karami et al. [67], targeted DDoS/booter services, attempting to disrupt their payment infrastructure through a
 1614 payment intervention. Specifically, they focused on DDoS service providers that were utilising *PayPal* as a payment
 1615 platform. Through the use of crawlers, they gathered information about the accounts that the booters were using to
 1616 receive payments, and then collaborated with *PayPal* to disable them. This effort resulted in a noticeable availability
 1617 drop of these services, and since the customers were having issues with payment, the customer base was reduced.
 1618

1619 *Putman et al.* [111] focus on the botnet financial infrastructure, applying the *Business Model Canvas* to a botnet
 1620 business, as well as on the botnet life cycle. They use four case studies in which botnets perform DDoS, bank credential
 1621 fraud, spamming and click fraud attacks, to assess the attacker's botnet set-up costs and revenue ratio, along with the
 1622 financial impact on the victims of such attacks.
 1623

1624 There are also more broad spectrum approaches, identifying and analyzing CaaS characteristics, as well as how
 1625 business models can be utilised in cybercrime research to map the elements and factors that are impactful in the
 1626 formation and profitable operation of a cybercrime business [61, 62, 126, 127].
 1627

1628 Lastly, our effort focuses more on the specific market of botnets and the business models implemented by botmasters,
 1629 in a darkweb context. Additionally, to the best of our knowledge, this is the only work that presents a correlation
 1630 between business models and botnet takedown methods. Through this correlation we aim to provide a new perspective
 1631 on how botnet takedown operations can be strategised, and purposed to target a larger variety of botnet components.
 1632

1634 6 CONCLUSION

1635 The cyber world is still far from being considered safe from the botnet threat. Darkweb marketplaces and forums
 1636 constitute a vital part of cybercrime operations, serving the two essential purposes of such a business, namely advertising
 1637 and selling, while offering anonymity to their users.
 1638

1639 Cybercrime keeps evolving, aiming towards new methods of exploitation, evasion and takedown resilience. Hence,
 1640 the defending side must keep up with the same pace, improving their detection and defense methods, as well as the
 1641 effectiveness of their takedown operations. Takedown operations are prone to technical, legal and jurisdictional issues,
 1642 and require a lot of resources along with the cooperation between countries and organisations from both the public and
 1643 private sector. Hence, we argue that shifting the focus of takedown operations to also target business model segments
 1644 related to revenue generation, could eliminate some of these challenges (e.g. reverse engineering of the botnet malware,
 1645 legal constraints) and enhance the impact of takedown operations.
 1646

1647 Gaining a better understanding of the botnet economic ecosystem through business models, can contribute towards
 1648 novel economic disruption methods. Based on our two adapted models, with the *Value Chain Model* as a point of
 1649 reference (Figure 4), this would translate into directing attention towards components of the *monetization* and *firm*
 1650 *infrastructure* segments. Focusing on developing methods specifically targeting the revenue generating related aspects of
 1651 the botnet business, could prove detrimental for the industry. Developing methods to impair these elements throughout
 1652 different levels, could assist in taking away the economic incentives and motivation of cybercriminals to further carry
 1653 out their operations, and even discourage future ones from ever taking their first step into the cybercrime world.
 1654

1655 REFERENCES

1656 [1] Tokunbo Agbola. 2020. Value Chain Analysis: An Internal Assessment of Competitive Advantage. <https://www.business-to-you.com/value-chain/>
 1657 [2] Wajeeha Ahmad. 2019. Why Botnets Persist: Designing Effective Technical and Policy Interventions. <https://internetpolicy.mit.edu/wp-content/uploads/2019/09/publications-ipri-2019-02.pdf>
 1658 [3] Akamai. 2020. Ransom Demands Return: New DDoS Extortion Threats From Old Actors Targeting Finance and retail. <https://blogs.akamai.com/sitr/2020/08/ransom-demands-return-new-ddos-extortion-threats-from-old-actors-targeting-finance-and-retail.html>

1665 [4] Atif Mushtaq Alex Lanstein. 2008. Srizbi control regained by original owner. <https://www.fireeye.com/blog/threat-research/2008/11/its-srizbi-trun-now.html>

1666 [5] Kamal Alieyan, Ammar ALmomani, Ahmad Manasrah, and Mohammed M Kadhum. 2017. A survey of botnet detection based on DNS. *Neural Computing and Applications* 28, 7 (2017), 1541–1558.

1668 [6] Sumayah Alrwais, Xiaojing Liao, Xianghang Mi, Peng Wang, Xiaofeng Wang, Feng Qian, Raheem Beyah, and Damon McCoy. 2017. Under the Shadow of Sunshine: Understanding and Detecting Bulletproof Hosting on Legitimate Service Provider Networks. In *2017 IEEE Symposium on Security and Privacy (SP)*. IEEE, San Jose, CA, USA, 805–823. <https://doi.org/10.1109/SP.2017.32>

1670 [7] Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Drakatos, Michail Karavolos, Sarantis Kotsilis, and David KY Yau. 2017. Botnet command and control architectures revisited: Tor hidden services and fluxing. In *International Conference on Web Information Systems Engineering*. Springer, Springer, Cham, Puschno, Russia, 517–527. https://link.springer.com/chapter/10.1007/978-3-319-68786-5_41

1672 [8] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al. 2017. Understanding the mirai botnet. In *26th USENIX security symposium (USENIX Security 17)*. USENIX Association, USA, 1093–1110.

1674 [9] Dan WoodsSara BoddyShahnawaz Backer. 2020. Genesis Marketplace, a Digital Fingerprint Darknet Store. <https://www.f5.com/labs/articles/threat-intelligence/genesis-marketplace--a-digital-fingerprint-darknet-store>

1676 [10] BBC. 2013. FBI and Microsoft take down \$500m-theft botnet Citadel. <https://www.bbc.com/news/technology-22795074#:~:text=The%20FBI%20and%20Microsoft%20have,million%20machines%20to%20steal%20data>

1678 [11] Victor Benjamin, Weifeng Li, Thomas Holt, and Hsinchun Chen. 2015. Exploring threats and vulnerabilities in hacker web: Forums, IRC and carding shops. In *2015 IEEE International Conference on Intelligence and Security Informatics (ISI)*. IEEE, Baltimore, MD, USA, 85–90. <https://doi.org/10.1109/ISI.2015.7165944>

1680 [12] Leon Böck, Emmanouil Vasilomanolakis, Max Mühlhäuser, and Shankar Karuppayah. 2018. Next Generation P2P Botnets: Monitoring Under Adverse Conditions. In *Research in Attacks, Intrusions, and Defenses*, Michael Bailey, Thorsten Holz, Manolis Stamatogiannis, and Sotiris Ioannidis (Eds.). Springer International Publishing, Cham, 511–531.

1682 [13] John Bohannon. 2020. Why criminals can't hide behind Bitcoin. <https://www.sciencemag.org/news/2016/03/why-criminals-cant-hide-behind-bitcoin>

1684 [14] Giovanni Bottazzi and Gianluigi Me. 2014. The Botnet Revenue Model. In *Proceedings of the 7th International Conference on Security of Information and Networks* (Glasgow, Scotland, UK) (SIN '14). Association for Computing Machinery, New York, NY, USA, 459–465. <https://doi.org/10.1145/2659651.2659673>

1686 [15] Danton Bryans. 2014. Bitcoin and money laundering: mining for an effective solution. *Ind. LJ* 89 (2014), 441.

1688 [16] Tom Burt. 2020. New action to disrupt world's largest online criminal network. <https://blogs.microsoft.com/on-the-issues/2020/03/10/necurs-botnet-cyber-crime-disrupt/>

1690 [17] Mattha Busby. 2021. Darkmarket: World's Largest Illegal Dark Web Marketplace Taken Down. <https://www.europol.europa.eu/newsroom/news/darkmarket-worlds-largest-illegal-dark-web-marketplace-taken-down>

1692 [18] Leon Böck, Martin Fejřskov, Katerina Demetzou, Shankar Karuppayah, Max Mühlhäuser, and Emmanouil Vasilomanolakis. 2022. Processing of botnet tracking data under the GDPR. *Computer Law & Security Review* 45 (2022), 105652. <https://doi.org/10.1016/j.clsr.2021.105652>

1694 [19] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. 2011. Measuring Pay-per-Install: The Commodification of Malware Distribution. In *20th USENIX Security Symposium (USENIX Security 11)*. USENIX Association, San Francisco, CA, 13. <https://www.usenix.org/conference/usenix-security-11/measuring-pay-install-commoditization-malware-distribution>

1696 [20] Guy Caspi. 2020. Why Are We Losing The Cyberwar? <https://www.forbes.com/sites/forbestechcouncil/2020/01/22/why-are-we-losing-the-cyberwar/>

1698 [21] Microsoft News Center. 2013. Microsoft, the FBI, Europol and industry partners disrupt the notorious ZeroAccess botnet. <https://news.microsoft.com/2013/12/05/microsoft-the-fbi-europol-and-industry-partners-disrupt-the-notorious-zeroaccess-botnet/>

1700 [22] Thomas M Chen. 2010. Stuxnet, the real start of cyber warfare? [Editor's Note]. *IEEE Network* 24, 6 (2010), 2–3.

1702 [23] Kim-Kwang Raymond Choo. 2011. The cyber threat landscape: Challenges and future research directions. *Computers & security* 30, 8 (2011), 719–731.

1704 [24] Catalin Cimpanu. 2020. Microsoft orchestrates coordinated takedown of Necurs botnet. <https://www.zdnet.com/article/microsoft-orchestrates-coordinated-takedown-of-necurs-botnet/>

1706 [25] Alma Cole, Michael Mellor, and Daniel Noyes. 2007. Botnets: The rise of the machines. In *Proceedings on the 6th Annual Security Conference*. Association for Computing Machinery, New York, NY, United States, Oak Ridge Tennessee USA, 1–14.

1708 [26] Evan Cooke, Farnam Jahanian, and Danny McPherson. 2005. The Zombie Roundup: Understanding, Detecting, and Disrupting Botnets. *SRUTI* 5 (2005), 6–6.

1710 [27] Dylan Curran. 2018. My terrifying deep dive into one of Russia's largest hacking forums. <https://www.theguardian.com/commentisfree/2018/jul/24/darknet-dark-web-hacking-forum-internet-safety>

1712 [28] Mike Dalton. 2020. Can Monero Be Traced? How the U.S. Is Trying to Track the Privacy Coin. <https://www.bitrates.com/news/p/can-monero-be-traced-how-the-us-is-trying-to-track-the-privacy-coin>

1714 [29] A Decker, D Sancho, L Kharouni, M Goncharov, and R McArdle. 2009. A study of the Pushdo/Cutwail Botnet.

1717 [30] Photon Research Team Digital Shadows. 2020. With The Empire Falling, Who Will Take Over The Throne? <https://www.digitalshadows.com/blog-and-research/with-the-empire-falling-who-will-take-over-the-throne/>

1718 [31] David Dittrich. 2012. So You Want to Take over a Botnet. In *Proceedings of the 5th USENIX Conference on Large-Scale Exploits and Emergent Threats* (San Jose, CA) (*LEET'12*). USENIX Association, USA, 6.

1719 [32] David Dittrich, Felix Leder, and Tillmann Werner. 2010. A case study in ethical decision making regarding remote mitigation of botnets. In *International Conference on Financial Cryptography and Data Security*. Springer, Springer, Berlin, Heidelberg, Tenerife, Canary Islands, Spain, 216–230.

1720 [33] Po-Yi Du, Ning Zhang, Mohammadreza Ebrahimi, Sagar Samtani, Ben Lazarine, Nolan Arnold, Rachael Dunn, Sandeep Suntwal, Guadalupe Angeles, Robert Schweitzer, et al. 2018. Identifying, collecting, and presenting hacker community data: Forums, IRC, carding shops, and DNM. In *2018 IEEE international conference on intelligence and security informatics (ISI)*. IEEE, IEEE, Miami, FL, USA, 70–75.

1721 [34] Mike Ebinum. 2016. How To: Business Model Canvas Explained. <https://medium.com/seed-digital/how-to-business-model-canvas-explained-ad3676b6fe4>

1722 [35] EC-Council. 2019. 9 Of The Biggest botnet Attacks Of The 21st Century. <https://blog.eccouncil.org/9-of-the-biggest-botnet-attacks-of-the-21st-century/#:~:text=EarthLink%20Spammer%E2%80%942000&text=Over%201.25%20million%20malicious%20emails,the%20information%20to%20the%20sender>

1723 [36] EMCDDA. 2020. EMCDDA special report: COVID-19 and drugs – Drug supply via darknet markets. <https://www.emcdda.europa.eu/publications/ad-hoc/covid-19-and-drugs-drug-supply-via-darknet-markets>

1724 [37] Enisa. 2020. ENISA Threat Landscape 2020 - Cryptojacking. <https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-cryptojacking>

1725 [38] Enisa. 2020. Enisa Threat Landscape 2020: Cyber Attacks Becoming More Sophisticated, Targeted, Widespread and Undetected. <https://www.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020>

1726 [39] Jose Esteves, Elisabeth Ramalho, and Guillermo De Haro. 2017. To improve cybersecurity, think like a hacker. *MIT Sloan Management Review* 58, 3 (2017), 71.

1727 [40] Europol. 2014. Global Action Targeting Shylock Malware. <https://www.europol.europa.eu/newsroom/news/global-action-targeting-shylock-malware>

1728 [41] Europol. 2015. Botnet Taken Down Through International Law Enforcement Cooperation. <https://www.europol.europa.eu/newsroom/news/botnet-taken-down-through-international-law-enforcement-cooperation>

1729 [42] Europol. 2016. 'Avalance' Network Dismantled In International Cyber Operation. <https://www.europol.europa.eu/newsroom/news/%E2%80%98avalanche%E2%80%99-network-dismantled-in-international-cyber-operation>

1730 [43] Europol. 2019. MONEY MULING: Public awareness and prevention. <https://www.europol.europa.eu/activities-services/public-awareness-and-prevention-guides/money-mulung#:~:text=What%20is%20Money%20Muling%3F,a%20type%20of%20money%20laundering.&text=Even%20if%20money%20mules%20are,the%20proceeds%20of%20such%20crimes>

1731 [44] Europol. 2021. World'S Most Dangerous Malware Emotet Disrupted Through Global Action. <https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action>

1732 [45] Flashpoint. 2020. Dark Web Marketplaces 2020. <https://go.flashpoint-intel.com/docs/flashpoint-pricing-analysis-dark-web-marketplaces-2020>

1733 [46] Richard Ford and Sarah Gordon. 2006. Cent, Five Cent, Ten Cent, Dollar: Hitting Botnets Where It Really Hurts. In *Proceedings of the 2006 Workshop on New Security Paradigms (Germany) (NSPW '06)*. Association for Computing Machinery, New York, NY, USA, 3–10. <https://doi.org/10.1145/1278940.1278942>

1734 [47] Nathan Friess and John Ayccock. 2007. Black market botnets. <https://prism.ucalgary.ca/handle/1880/45380>.

1735 [48] D. Frkat, R. Annessi, and T. Zseby. 2018. ChainChannels: Private Botnet Communication Over Public Blockchains. In *2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)*. IEEE, Halifax, NS, Canada, 1244–1252. https://doi.org/10.1109/Cybermatics_2018.2018.00219

1736 [49] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. 2014. An empirical comparison of botnet detection methods. *computers & security* 45 (2014), 100–123.

1737 [50] Dimitrios Georgoulias, Jens Myrup Pedersen, Morten Falch, and Emmanouil Vasilomanolakis. 2021. A qualitative mapping of Darkweb marketplaces. In *2021 APWG Symposium on Electronic Crime Research (eCrime)*. IEEE, Boston, MA, USA, 1–15. <https://doi.org/10.1109/eCrime54498.2021.9738766>

1738 [51] Dimitrios Georgoulias, Jens Myrup Pedersen, Morten Falch, and Emmanouil Vasilomanolakis. 2022. COVID-19 Vaccination Certificates in the Darkweb. <https://doi.org/10.1145/3530877>

1739 [52] Miguel Gomez. 2020. Dark Web Price Index 2020. <https://www.privacyaffairs.com/dark-web-price-index-2020/#6>

1740 [53] Max Goncharov. 2012. Russian underground 101. , 51 pages.

1741 [54] Max Goncharov. 2015. Criminal Hideouts for Lease: Bulletproof Hosting Services. <https://www.trendmicro.no/media/wp/wp-criminal-hideouts-for-lease-en.pdf>

1742 [55] Joan Goodchild. 2011. Conficker Working Group says worm is stopped, but not gone. <https://www.csoonline.com/article/2126743/conficker-working-group-says-worm-is-stopped-but-not-gone.html>

1743 [56] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon Kang, and David Dagon. 2007. Peer-to-Peer Botnets: Overview and Case Study. In *Proceedings of the First Conference on First Workshop on Hot Topics in Understanding Botnets (Cambridge, MA) (HotBots'07)*. USENIX Association, USA, 1.

1769 [57] Alex Guirkhoo. 2019. Understanding The Different Cybercriminal Platforms: AVCs, Marketplaces, And Forums. <https://www.digitalshadows.com/blog-and-research/understanding-the-different-cybercriminal-platforms-avcs-marketplaces-and-forums/>

1770 [58] Hackerspaces. 2020. Hackerspace IRC Channels. https://wiki.hackerspaces.org/IRC_Channel

1771 [59] Juan Hardoy. 2015. Breaking Up a Botnet – How Ramnit was Foiled. <https://blogs.microsoft.com/eupolicy/2015/10/22/breaking-up-a-botnet-how-ramnit-was-foiled/>

1772 [60] Alex Hern. 2020. Silk Road bitcoins worth \$1bn change hands after seven years. <https://www.theguardian.com/technology/2020/nov/04/silk-road-bitcoins-worth-1bn-change-hands-after-seven-years>

1773 [61] Keman Huang, Michael Siegel, and Stuart Madnick. 2018. Systematically understanding the cyber attack business: A survey. *ACM Computing Surveys (CSUR)* 51, 4 (2018), 1–36.

1774 [62] Thomas S. Hyslip. 2020. *Cybercrime-as-a-Service Operations*. Springer International Publishing, Cham, 815–846. https://doi.org/10.1007/978-3-319-78440-3_36

1775 [63] Ionut Ilascu. 2020. TrickBot malware under siege from all sides, and it's working. <https://www.bleepingcomputer.com/news/security/trickbot-malware-under-siege-from-all-sides-and-its-working/>

1776 [64] Cambridge University Institute for Manufacturing. 2016. Porter's Value Chain. <https://www.ifm.eng.cam.ac.uk/research/dstools/value-chain/>

1777 [65] Interpol. 2015. INTERPOL supports global operation against Dorkbot botnet. <https://www.interpol.int/es/Noticias-y-acontecimientos/Noticias/2015/INTERPOL-supports-global-operation-against-Dorkbot-botnet>

1778 [66] Erik Kain. 2013. The Silk Road Shuts Down, But The Black Market Isn't Going Anywhere. <https://www.forbes.com/sites/erikkain/2013/10/02/the-silk-road-shuts-down-but-the-black-market-isnt-going-anywhere/?sh=6cff0e987a6c>

1779 [67] Mohammad Karami, Youngsam Park, and Damon McCoy. 2016. Stress Testing the Booters: Understanding and Undermining the Business of DDoS Services. In *Proceedings of the 25th International Conference on World Wide Web* (Montréal, Québec, Canada) (WWW '16). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 1033–1043. <https://doi.org/10.1145/2872427.2883004>

1780 [68] Kaspersky. 2014. Shylock/Caphaw malware Trojan: the overview. <https://securelist.com/shylockcaphaw-malware-trojan-the-overview/64599/>

1781 [69] Kaspersky. 2021. Zeus Virus. <https://usa.kaspersky.com/resource-center/threats/zeus-virus>

1782 [70] Limor Kessem. 2015. The Return of Ramnit: Life After a Law Enforcement Takedown. <https://securityintelligence.com/the-return-of-ramnit-life-after-a-law-enforcement-takedown/>

1783 [71] S. Khattak, N. R. Rayam, K. R. Khan, A. A. Syed, and S. A. Khayam. 2014. A Taxonomy of Botnet Behavior, Detection, and Defense. *IEEE Communications Surveys Tutorials* 16, 2 (2014), 898–924. <https://doi.org/10.1109/SURV.2013.091213.00134>

1784 [72] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas. 2017. DDoS in the IoT: Mirai and other botnets. *Computer* 50, 7 (2017), 80–84. <https://ieeexplore.ieee.org/abstract/document/7971869>

1785 [73] Brian Krebs. 2011. U.S. Government Takes Down Coreflood Botnet. <https://krebsonsecurity.com/2011/04/u-s-government-takes-down-coreflood-botnet/>

1786 [74] Brian Krebs. 2011. ‘Biggest Cybercriminal Takedown in History’. <https://krebsonsecurity.com/2011/11/malware-click-fraud-kingpins-arrested-in-estonia/>

1787 [75] Brian Krebs. 2012. Top Spam Botnet, “Grum,” Unplugged. <https://krebsonsecurity.com/2012/07/top-spam-botnet-grum-unplugged/>

1788 [76] Brian Krebs. 2017. Who is Anna-Senpai, the Mirai Worm Author? <https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/>

1789 [77] Brian Krebs. 2021. International Action Targets Emotet Crimeware. <https://krebsonsecurity.com/2021/01/international-action-targets-emotet-crimeware/>

1790 [78] Joseph Kurian. 2018. Value Chain Analysis. http://apppm.man.dtu.dk/index.php/Value_Chain_Analysis

1791 [79] Scott Langdon. 2020. Is Bitcoin Traceable? Things You Must Know. <https://www.moneytaskforce.com/money/is-bitcoin-traceable/>

1792 [80] Kirill Levchenko, Andreas Pitsillidis, Neha Chachra, Brandon Enright, Márk Félegyházi, Chris Grier, Tristan Halvorson, Chris Kanich, Christian Kreibich, He Liu, Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M. Voelker, and Stefan Savage. 2011. Click Trajectories: End-to-End Analysis of the Spam Value Chain. In *Proceedings of the 2011 IEEE Symposium on Security and Privacy (SP '11)*. IEEE Computer Society, USA, 431–446. <https://doi.org/10.1109/SP.2011.24>

1793 [81] John Leyden. 2012. Microsoft seizes Chinese dot-org to kill Nitel bot army. https://www.theregister.com/2012/09/13/botnet_takedown/

1794 [82] Zhen Li and Qi Liao. 2014. Toward a Monopoly Botnet Market. *Information Security Journal: A Global Perspective* 23, 4-6 (2014), 159–171. <https://doi.org/10.1080/19393555.2014.931488>

1795 [83] Zhen Li, Qi Liao, and Aaron Striegel. 2009. Botnet economics: uncertainty matters. In *Managing information risk and the economics of security*. Springer, Boston, MA, 245–267. https://link.springer.com/chapter/10.1007/978-0-387-09762-6_12

1796 [84] MalwareBytes. 2021. Ryuk ransomware. <https://www.malwarebytes.com/ryuk-ransomware/>

1797 [85] Malwarebytes. 2021. Trickbot. <https://www.malwarebytes.com/trickbot/>

1798 [86] Etay Maor. 2013. No Money Mule, No Problem: Recruitment Website Kits for Sale. <https://securityintelligence.com/money-mule-problem-recruitment-website-kits-sale/>

1799 [87] MalwareTech Marcus Hutchins. 2017. The Kelihos Botnet. <https://www.malwaretech.com/2017/04/the-kelihos-botnet.html>

1800 [88] matricksillex. 2020. Dread (Darknet Market Forum) Review and Tutorial. <https://darkrebel.net/dread-darknet-market-forum-review-and-tutorial>

1801 [89] matricksillex. 2020. HYDRA Review and Tutorial. <https://darkrebel.net/hydra-review-and-tutorial>

[90] matricksillex. 2020. ToRRez Market Review and Tutorial. <https://darkrebel.net/torrez-market-review-and-tutorial>

[91] matricksillex. 2020. White House Market Review and Tutorial. <https://darkrebel.net/white-house-market-review-and-tutorial>

[92] Matt. 2020. How dark web users utilise postal services to buy and ship drugs. <https://www.osintme.com/index.php/2020/06/12/how-dark-web-users-utilise-postal-services-to-buy-and-ship-drugs/>

[93] Michael McCaul. 2017. The war in cyberspace: Why we are losing—How to fight back. https://www.youtube.com/watch?v=nq_jneFcps&ab_channel=RSAConference

[94] Christopher D McDermott, Farzan Majdani, and Andrei V Petrovski. 2018. Botnet detection in the internet of things using deep learning approaches. In *2018 international joint conference on neural networks (IJCNN)*. IEEE, IEEE, USA, 1–8.

[95] Elliott Peterson Michael Sandee, Tillmann Werner. 2015. Gameover Zeus – Bad Guys and Backends. <https://www.blackhat.com/docs/us-15/materials/us-15-Peterson-GameOver-Zeus-Badguys-And-Backends.pdf>

[96] Ujan Mukhopadhyay, Anthony Skjellum, Oluwakemi Hambolu, Jon Oakley, Lu Yu, and Richard Brooks. 2016. A brief survey of cryptocurrency systems. In *2016 14th annual conference on privacy, security and trust (PST)*. IEEE, IEEE, Auckland, New Zealand, 745–752.

[97] Simon Mullis. 2013. Cybercriminal Intent: How to Build Your Own Botnet in Less Than 15 Minutes. <https://www.fireeye.com/blog/executive-perspective/2013/08/cybercriminal-intent-how-to-build-your-own-botnet-in-less-than-15-minutes.html>

[98] Atif Mushtaq. 2012. Killing the Beast - Part 5. <https://www.fireeye.com/blog/threat-research/2012/07/killing-the-beast-part-5.html>

[99] Yacin Nadjji, Manos Antonakakis, Roberto Perdisci, David Dagon, and Wenke Lee. 2013. Beheading Hydras: Performing Effective Botnet Takedowns. In *Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security (Berlin, Germany) (CCS '13)*. Association for Computing Machinery, New York, NY, USA, 121–132. <https://doi.org/10.1145/2508859.2516749>

[100] Rebecca R. Ruiz Nathaniel Popper. 2017. 2 Leading Online Black Markets Are Shut Down by Authorities. <https://www.nytimes.com/2017/07/20/business/dealbook/alphabay-dark-web-opioids.html>

[101] Alexander Osterwalder. 2012. The Business Model Canvas. https://www.youtube.com/watch?v=RzkdJiax6Tw&t=1939s&ab_channel=GonzaloAste

[102] Alexander Osterwalder and Yves Pigneur. 2010. *Business model generation: a handbook for visionaries, game changers, and challengers*. John Wiley & Sons, Hoboken, New Jersey.

[103] Mehul Patel. 2019. Cat and Mouse: Understanding the Security Industry's Failure to Stop Cyberattackers. <https://securityboulevard.com/2019/08/cat-and-mouse-understanding-the-security-industrys-failure-to-stop-cyberattackers/>

[104] Caitlin Ostroff Paul Vigna. 2020. Why Hackers Use Bitcoin and Why It Is So Difficult to Trace. <https://www.wsj.com/articles/why-hackers-use-bitcoin-and-why-it-is-so-difficult-to-trace-11594931595>

[105] Check Point. 2021. February 2021's Most Wanted Malware: Trickbot Takes Over Following Emotet Shutdown. <https://blog.checkpoint.com/2021/03/11/february-2021s-most-wanted-malware-trickbot-takes-over-following-emotet-shutdown/>

[106] Robey Pointer. 2021. Eggdrop. <https://www.eggheads.org/>

[107] Dutch Police. 2021. International police operation LadyBird: global botnet Emotet dismantled. <https://www.politie.nl/nieuws/2021/januari/27/11-internationale-politieoperatie-ladybird-botnet-emotet-wereldwijd-ontmanteld.html>

[108] Michael E Porter and Competitive Advantage. 1985. Creating and sustaining superior performance. *Competitive advantage* 167 (1985), 167–206.

[109] Howard Poston. 2020. Cybercrime at scale: Dissecting a dark web phishing kit. <https://resources.infosecinstitute.com/topic/cybercrime-at-scale-dissecting-a-dark-web-phishing-kit/>

[110] K Munivara Prasad, A Rama Mohan Reddy, and K Venugopal Rao. 2020. BARTD: Bio-inspired anomaly based real time detection of under rated App-DDoS attack on web. *Journal of King Saud University-Computer and Information Sciences* 32, 1 (2020), 73–87.

[111] C. G. J. Putman, Abhishta, and L. J. M. Nieuwenhuis. 2018. Business Model of a Botnet. In *2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)*. IEEE, USA, 441–445. <https://doi.org/10.1109/PDP2018.2018.00077>

[112] Peter Reuter. 2005. *Chasing dirty money: The fight against money laundering*. Peterson Institute, 1750 Massachusetts Avenue, NW Washington, DC 20036.

[113] Rafael A. Rodríguez-Gómez, Gabriel Maciá-Fernández, and Pedro García-Teodoro. 2013. Survey and Taxonomy of Botnet Research through Life-Cycle. *ACM Comput. Surv.* 45, 4, Article 45 (Aug. 2013), 33 pages. <https://doi.org/10.1145/2501654.2501659>

[114] Raj Samani and Francois Paget. 2013. Cybercrime exposed: Cybercrime-as-a-service.

[115] Jason Sattler. 2019. What we've learned from 10 years of the Conficker mystery. <https://blog.f-secure.com/what-weve-learned-from-10-years-of-the-conficker-mystery/>

[116] Mathew J. Schwartz. 2013. Microsoft, FBI Trumpet Citadel Botnet Takedowns. <https://www.darkreading.com/attacks-and-breaches/microsoft-fbi-trumpet-citadel-botnet-takedowns/d/d-id/1110261>

[117] Mathew J. Schwartz. 2015. Dorkbot Botnets Get Busted. <https://www.bankinfosecurity.com/dorkbot-ddos-botnets-get-busted-a-8728>

[118] Vicente Segura and Javier Lahuerta. 2010. Modeling the economic incentives of ddos attacks: Femtocell case study. In *Economics of information security and privacy*. Springer, Boston, MA, 107–119. https://doi.org/10.1007/978-1-4419-6967-5_7

[119] Shadowserver. 2017. Kelihos.E Botnet – Law Enforcement Takedown. <https://www.shadowserver.org/news/kelihos-e>

[120] Shadowserver. 2018. Avalanche 1,2,3,.... <https://www.shadowserver.org/news/avalanche-123/>

[121] Howard Shrobe, David L. Shrier, and Alex Pentland. 2018. *CHAPTER 4 Fixing a Hole: The Labor Market for Bugs*. MIT Press, Massachusetts, 129–159.

[122] Signal. 2020. 5 Dark Web Marketplaces Security Professionals Need To Know About. <https://www.getsignal.info/blog/5-dark-web-marketplaces>

1873 [123] Signal. 2020. 7 Dark web Forums You Need To Monitor For Improved Cyber Security. <https://www.getsignal.info/blog/7-dark-web-forums-for-improved-cybersecurity>

1874 [124] Sérgio S.C. Silva, Rodrigo M.P. Silva, Raquel C.G. Pinto, and Ronaldo M. Salles. 2013. Botnets: A survey. *Computer Networks* 57, 2 (2013), 378 – 403. <https://doi.org/10.1016/j.comnet.2012.07.021>

1875 [125] Craig Sirois. 2020. New McAfee Report Estimates Global Cybercrime Losses to Exceed \$1 Trillion. https://www.mcafee.com/enterprise/en-us/about/newsroom/press-releases/press-release.html?news_id=6859bd8c-9304-4147-bdab-32b35457e629&utm_source=twitter_mcafee&utm_medium=social_organic&utm_term=&utm_content=&utm_campaign&sf240838844=1

1876 [126] Aditya K Sood, Rohit Bansal, and Richard J Enbody. 2012. Cybercrime: Dissecting the state of underground enterprise. *IEEE internet computing* 17, 1 (2012), 60–68.

1877 [127] Aditya K Sood and Richard J Enbody. 2013. Crimeware-as-a-service—a survey of commoditized crimeware in the underground market. *International Journal of Critical Infrastructure Protection* 6, 1 (2013), 28–38.

1878 [128] Staff and The Guardian agencies in Berlin. 2019. German police shut down one of world's biggest dark web sites. <https://www.theguardian.com/world/2019/may/03/german-police-close-down-dark-web-marketplace>

1879 [129] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. 2009. Your Botnet is My Botnet: Analysis of a Botnet Takeover. In *Proceedings of the 16th ACM Conference on Computer and Communications Security* (Chicago, Illinois, USA) (CCS '09). Association for Computing Machinery, New York, NY, USA, 635–647. <https://doi.org/10.1145/1653662.1653738>

1880 [130] Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini, and Giovanni Vigna. 2011. The Underground Economy of Spam: A Botmaster's Perspective of Coordinating Large-Scale Spam Campaigns. *LEET* 11 (2011), 4–4. https://www.usenix.org/legacy/event/leet11/tech/full_papers/Stone-Gross.pdf.

1881 [131] Strategyzer. 2020. Business Model Canvas. https://www.strategyzer.com/bmc_thank_you?submissionGuid=9a5690b9-b0d9-4274-b423-a121993570ec

1882 [132] Matt Sully and Matt Thompson. 2010. The deconstruction of the Mariposa botnet. *Defence Intelligence*. Retrieved September 16 (2010), 2012.

1883 [133] Evan Tarver. 2019. What Are the Primary Activities of Michael Porter's Value Chain? <https://www.investopedia.com/ask/answers/050115/what-are-primary-activities-michael-porters-value-chain.asp>

1884 [134] Digital Shadows Analyst Team. 2017. Innovation In The Underworld: Reducing The Risk Of Ripper Fraud. <https://www.digitalshadows.com/blog-and-research/innovation-in-the-underworld-reducing-the-risk-of-ripper-fraud/>

1885 [135] TheDarkWebLinks. 2020. Torrez Market | Torrez Market Links | Torrez Dark Web Links. <https://www.thedarkweblinks.com/torrez-market/>

1886 [136] Iain Thompson. 2017. International team takes down virus-spewing Andromeda botnet. https://www.theregister.com/2017/12/05/international_team_takes_down_virus_spewing_andromeda_botnet/

1887 [137] Iain Thomson. 2016. Online criminals iced as cops bury malware-spewing Avalanche. https://www.theregister.com/2016/12/01/cops_shutter_avalanche_dark_net/

1888 [138] Tillmann. 2013. Peer-to-Peer Poisoning Attack against the Kelihos.C Botnet. <https://www.crowdstrike.com/blog/peer-peer-poisoning-attack-against-kelihosc-botnet/>

1889 [139] Tor. 2019. Tor: Onion Service Protocol. <https://2019.www.torproject.org/docs/onion-services>

1890 [140] Ian Traynor. 2007. Russia accused of unleashing cyberwar to disable Estonia.

1891 [141] Trendmicro. 2021. Ransomware. <https://www.trendmicro.com/vinfo/us/security/definition/ransomware>

1892 [142] Ping Wang, Baber Aslam, and Cliff C Zou. 2010. Peer-to-peer botnets. In *Handbook of Information and Communication Security*. Springer, University of Central Florida, Orlando, Florida 32816, 335–350.

1893 [143] Ping Wang, Lei Wu, Baber Aslam, and Cliff C. Zou. 2009. A Systematic Study on Peer-to-Peer Botnets. In *Proceedings of the 2009 Proceedings of 18th International Conference on Computer Communications and Networks (ICCCN '09)*. IEEE Computer Society, USA, 1–8. <https://doi.org/10.1109/ICCCN.2009.5235360>

1894 [144] Rob Wright. 2018. Botnet takedown snares 3ve, Methbot ad fraud campaigns. <https://searchsecurity.techtarget.com/news/252453401/Botnet-takedown-snares-3ve-Methbot-ad-fraud-campaigns>

1895 [145] Rob Wright. 2019. FBI: How we stopped the Mirai botnet attacks. <https://searchsecurity.techtarget.com/news/252459016/FBI-How-we-stopped-the-Mirai-botnet-attacks>

1896 [146] Sam Zeitlin. 2015. Botnet takedowns and the fourth amendment. *NYUL Rev.* 90 (2015), 746.

1897 [147] Ziming Zhao, Mukund Sankaran, Gail-Joon Ahn, Thomas J Holt, Yiming Jing, and Hongxin Hu. 2016. Mules, seals, and attacking tools: Analyzing 12 online marketplaces. *IEEE Security & Privacy* 14, 3 (2016), 32–43.

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924