
RIoTPot: a modular hybrid-interaction IoT/OT
honeypot

Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis

Aalborg University, Denmark
{shsr,jens,emv}@es.aau.dk

Abstract. Honeypots are often used as a proactive attack detection
mechanism and as a source of threat intelligence data. However, many
honeypots are poorly maintained and cumbersome to extend. Moreover,
low-interaction honeypots are prone to fingerprinting attacks due to
their limited emulation capabilities. Nonetheless, low-interaction hon-
eypots are essential for environments with limited resources. In this pa-
per, we introduce RIoTPot, a modular and hybrid-interaction honeypot
for Internet-of-Things (IoT) and Operational Technology (OT) proto-
cols mainly used in Industrial Control System environments. RIoTPot’s
modularity comes as a result of plug-n-play container services while its
hybrid-interaction capability enables users to switch between low- and
high-interaction modes. We deploy RIoTPot on the Internet, receive a
large amount of attacks and discuss the results received on both low-
and high-interaction modes.

1 Introduction

Honeypots are deceptive systems that simulate a seemingly vulnerable system
to gather attacks. Over the years, many honeypot solutions have been proposed
that are commonly classified to low-, medium- and high-interaction based on
the level of interaction they offer to the adversary [19, 2]. Low- and medium-
interaction honeypots, due to their limited emulation capabilities, are prone to
honeypot fingerprinting that may limit their scope [18]. Honeypot fingerprinting
refers to adversarial methods that allow for the identification of the honeypot
nature of a system. Nevertheless, these two classes of honeypots are the most
commonly deployed ones. Other common issues with honeypots include the lack
of flexibility in extending/adapting them, the absence of support, and limited
documentation.

Despite the aforementioned limitations, honeypots are an excellent defensive
toolkit, especially with regard to the increasing number of IoT and OT attacks.
With such protocols being consistently attacked, in both consumer [7] and com-
mercial environments [5], deception mechanisms like honeypots offer an early
warning system and a method to analyse adversaries’ techniques [16, 12, 9].

Traditional honeypot simulations may run on virtualized environments like
VMs, virtual containers (LXC), or even language-based virtual environments.

2 S. Srinivasa et al.

Kedrowitsch et al. made a first effort to propose the use of containers for hon-
eypots [6]. The authors propose the usage of Linux containers as a platform to
develop honeypots and compliment their proposal by comparing the detection
methods of popular virtualization platforms against containers. Kedrowitsch et
al. conclude that limitations exist in the use of either containers or virtual ma-
chines as a honeypot platform. A much recent proposal by Reti et al. introduces
the use of container-based deception for honeypots [11]. The authors investi-
gate the possibilities of container-based honeypots and introduce the concept
of simulating container-escapes (fake network pivoting outside a container) as
a deception technique. Both approaches suggest the use of container systems
to achieve ease of deployment. Moreover, many open-source honeypots offer the
possibility of a containerized deployment for ease of installation. Nevertheless,
besides the aforesaid academic work there are not many actual honeypot im-
plementations that make use of containers. Furthermore, all existing honeypots
have a binary interaction level: they are either low-, medium-, or high-interaction
[19].

In this paper, we present RIoTPot1, a honeypot that: i.) breaks the tra-
ditional binary interaction paradigm, ii.) focuses on IoT and OT protocols,
and iii.) is designed with a modular-by-design architecture. First, the hybrid-
interaction level of RIoTPot aims at providing defenders flexibility by giving
them the ability to utilize the appropriate interaction level based on their needs
and capabilities. For instance, low constrained environments scale better with
low interaction components while high interaction comes handy when deeper
analysis of attack is required. Second, RIoTPot supports many IoT and OT
protocols (i.e., Telnet, SSH, CoAP, Modbus, MQTT), with more to be imple-
mented in the immediate future. At the moment, there are only a few real world
honeypot implementations that focus on IoT [15, 9] and even fewer for OT [12,
17]. Lastly, the modularity of the honeypot comes from its architecture; each
functionality of the honeypot is a plug-n-play component that can be edited,
activated or deactivated based on the user’s preferences.

2 RIoTPot Design

RIoTPot features a modular architecture that facilitates quick integration of
new protocol simulation modules. A modular software architecture is a struc-
tural approach of building software components as modules by separating the
the functionality of a program into independent, interchangeable modules, such
that each contains everything necessary to execute only one aspect of the de-
sired functionality [8]. Figure 1 shows the high level architecture of RIoTPot.
The prominent modules in the architecture are the RIoTPot core module, the
packet capture and noise filter module, the low-interaction modules, the high-
interaction modules, and the attack database.

The RIoTPot core consists of the required components for the configuration,
administration, and orchestration of the honeypot. In particular, the core module

1 https://github.com/aau-network-security/riotpot

RIoTPot: a modular hybrid-interaction IoT/OT honeypot 3

Low-Interaction
Emulation

HTTP SSH
Telnet

MQTT
CoAP

Mod-
bus

AMQP

+

High-Interaction
Emulation with

pluggable Containers

Host Machine / Cloud

Attack
Database

Container

RIoTPot Core

</>

Packet Capture &
Noise Filter

Fig. 1. High level architecture of RIoTPot

provides RIoTPot with all the required parameters at startup. This includes user
preferences for specific protocols, profile simulation, and the desired interaction
level. In addition, the core is responsible for the network management for the
high-interaction protocol services simulated on containers. The received attack
traffic is forwarded to the respective container that hosts the protocol on which
the attack was targeted. Furthermore, the core also facilitates the communication
between itself and the containers, if hosted on a cloud environment.

For the Packet capture and noise filter module the attack capture component
is responsible for storing the attack packets as pcap files, using tcpdump, which
can be used for detailed analysis (e.g., deep packet inspection). The noise filter
component filters out the traffic received from Internet-wide scanners like Shodan
[14] and Censys [3]. This helps the honeypot administrator to concentrate on
attacks that matter by removing the noise traffic generated by such services.

The low-interaction mode is achieved through independent packages, with
each package simulating a specific protocol. RIoTPot is implemented in Go lan-
guage [4] and facilitates the development of a modular architecture through pack-
ages. The packages act as plug-ins that can be added to the honeypot to extend
the protocols simulated. For example, the fakeshell package emulates a system
shell that can be leveraged by the SSH and the Telnet packages. The fakeshell

4 S. Srinivasa et al.

package can be extended to include emulation of specific commands. Further-
more, RIoTPot provides a template that can be used for integration of additional
protocols. The high-interaction mode is achieved by emulating the protocols as
services in container images. Hence, since a container implements the full pro-
tocol the honeypot provides the attacker with high interaction capabilities. The
containers act as high-interaction modules that offer a full implementation of
a protocol. Additional protocol services can be added by integrating containers
with the desired protocol services. The hybrid-interaction mode further allows
the user to emulate selective protocols on low or high-interaction levels. For ex-
ample, the user can choose to have SSH in low-interaction mode and MQTT in
high-interaction mode.

The attack database stores all the attack traffic received on the honeypot. The
database is setup as an independent module to ensure data availability even if a
honeypot module is down (e.g., due to a crash or DDoS attack). The database
is accessible from the low-interaction and high-interaction modules for attack
storage.

To sum up, the design of RIoTPot facilitates modularity through packages
and containers as plugins. Furthermore, the modular architecture assists the
hybrid-interaction model of RIoTPot.

3 Preliminary Results

The honeypot was deployed in both low and high interaction modes on two
hosts in our lab. The hosts were assigned a public IP each, under an unfiltered
network. We define an attack as any interaction with the honeypot as there is
no production value whatsoever. However, we differentiate incoming traffic from
well-known crawlers (e.g. Shodan). The attacks on the honeypots were recorded
for a period of one week. In the low-interaction variant, the protocols SSH,
Telnet, HTTP, MQTT, CoAP and Modbus were simulated through the plug-in
packages, while the high-interaction variant simulated the MQTT protocol in a
container. In addition to recording the attacks in the database, the hosts also
had the tcpdump service running in the background to capture the attack packets
for comprehensive analysis. A total of 7, 587 attacks were observed across all the
protocols simulated by RIoTPot.

Figure 2 shows the number of unique attacks received per protocol for a pe-
riod of one week. MQTT-HI indicates the high-interaction mode of the MQTT
protocol. We observe a trend in the number of attacks for all protocols. Further-
more, the number of attacks on the MQTT protocol in the high-interaction mode
is higher in comparison to the low-interaction mode. Moreover, we observe re-
curring sessions from same suspicious actors on the high-interaction mode, that
included topic creation, subscription and deletion, and modification of existing
messages in topics which have not been observed on the low-interaction mode.

Figure 3 depicts the percentage of attacks from Internet-scanning engines
(e.g., Shodan, Censys, Project Sonar [10], and ShadowServer [13]) in comparison
to the attacks from suspicious sources. We observe an average of 25% of the total

RIoTPot: a modular hybrid-interaction IoT/OT honeypot 5

Fig. 2. Number of attacks on protocols per day

traffic originating from 19 common scanning engines2. Filtering out such traffic
reduces noise and alert data fatigue for the administrators.

Fig. 3. Attack noise classification in percentage

4 Conclusion

In this paper, we introduce RIoTPot, a honeypot that features a hybrid-interaction
model with a modular design for IoT and OT protocols. RIoTPot addresses the
issue of limited interaction and flexibility, in addition to ease of deployment.
Our preliminary results suggest that the honeypot is attractive to adversaries
and is able to distinguish between suspicious traffic (traffic originating from at-
tackers) and common scanning engines (traffic likely coming from Shodan-like
systems). As future work, we aim to extend RIoTPot to support more IoT and
OT protocols like UPnP, AMQP, XMPP, S7, DNP3, Fieldbus and Profibus. Fur-
thermore, we intend to integrate threat intelligence reporting through STIX to
facilitate structured sharing of threat data [1]. Finally, we plan to perform a
more extensive evaluation of RIoTPot with an emphasis on ICS environments.

2 For a complete list of the supported scanning engines see: https://github.com/aau-
network-security/riotpot#12-Noise-Filter

6 S. Srinivasa et al.

References

1. Barnum, S.: Standardizing cyber threat intelligence information with the struc-
tured threat information expression (stix). Mitre Corporation 11, 1–22 (2012)

2. Bringer, M.L., Chelmecki, C.A., Fujinoki, H.: A survey: Recent advances and fu-
ture trends in honeypot research. International Journal of Computer Network and
Information Security 4(10), 63 (2012)

3. Censys: Censys search (2021), https://censys.io/

4. Golang: Go language (2021), https://golang.org/

5. Jiang, X., Lora, M., Chattopadhyay, S.: An experimental analysis of security vul-
nerabilities in industrial iot devices. ACM Trans. Internet Technol. 20(2) (May
2020). https://doi.org/10.1145/3379542, https://doi.org/10.1145/3379542

6. Kedrowitsch, A., Yao, D.D., Wang, G., Cameron, K.: A first look: Us-
ing linux containers for deceptive honeypots. In: Proceedings of the 2017
Workshop on Automated Decision Making for Active Cyber Defense. p.
15–22. SafeConfig ’17, Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3140368.3140371, https://doi.org/

10.1145/3140368.3140371

7. Mangino, A., Pour, M.S., Bou-Harb, E.: Internet-scale insecurity of consumer inter-
net of things: An empirical measurements perspective. ACM Transactions on Man-
agement Information Systems 11(4) (Oct 2020). https://doi.org/10.1145/3394504,
https://doi.org/10.1145/3394504

8. Mohammed, M., Elish, M., Qusef, A.: Empirical insight into the context of
design patterns: Modularity analysis. In: 2016 7th International Conference
on Computer Science and Information Technology (CSIT). pp. 1–6 (2016).
https://doi.org/10.1109/CSIT.2016.7549474

9. Oosterhof, M.: Cowrie ssh/telnet honeypot (2016), :https://github.com/

micheloosterhof/cowrie

10. Research, R.: Project sonar (2021), https://www.rapid7.com/research/

project-sonar/

11. Reti, D., Becker, N.: Escape the fake: Introducing simulated container-escapes for
honeypots (2021)

12. Rist, L., Vestergaard, J., Haslinger, D., Pasquale, A., Smith, J.: Conpot ics/scada
honeypot. Honeynet Project (conpot. org) (2013)

13. ShadowServer.org: Shadowserver.org (2021), https://www.shadowserver.org/

14. SHODAN: Shodan (2021), https://www.shodan.io/

15. Vasilomanolakis, E., Karuppayah, S., Fischer, M., Mühlhäuser, M., Plasoianu, M.,
Pandikow, L., Pfeiffer, W.: This network is infected: Hostage-a low-interaction hon-
eypot for mobile devices. In: Proceedings of the Third ACM workshop on Security
and privacy in smartphones & mobile devices. pp. 43–48 (2013)

16. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Hostage:
A mobile honeypot for collaborative defense. In: Proceedings of the 7th In-
ternational Conference on Security of Information and Networks. p. 330–333.
SIN ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2659651.2659663, https://doi.org/10.1145/2659651.

2659663

17. Vasilomanolakis, E., Srinivasa, S., Mühlhäuser, M.: Did you really hack a nuclear
power plant? an industrial control mobile honeypot. In: 2015 IEEE Conference on
Communications and Network Security (CNS). pp. 729–730. IEEE (2015)

RIoTPot: a modular hybrid-interaction IoT/OT honeypot 7

18. Vetterl, A., Clayton, R.: Bitter harvest: Systematically fingerprinting low- and
medium-interaction honeypots at internet scale. In: 12th USENIX Workshop on
Offensive Technologies (WOOT 18). USENIX Association, Baltimore, MD (Aug
2018), https://www.usenix.org/conference/woot18/presentation/vetterl

19. Zhang, L., Thing, V.: Three decades of deception techniques in active cy-
ber defense - retrospect and outlook. Computers & Security 106, 102288
(2021). https://doi.org/https://doi.org/10.1016/j.cose.2021.102288, https://www.
sciencedirect.com/science/article/pii/S0167404821001127

