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Abstract

The devastating effects of cyber-attacks, highli_"t the n¢ 2d for novel attack de-
tection and prevention techniques. Over the "~st y. =, considerable work has
been done in the areas of attack detection as we.. as in collaborative defense.
However, an analysis of the state of the a. suggests that many challenges ex-
ist in prioritizing alert data and in studying .“e relation between a recently
discovered attack and the probability « 1w « “rring again. In this article, we
propose a system that is intended for ch v .cterizing network entities and the
likelihood that they will behave ma. . >usly ‘n the future. Our system, namely
Network Entity Reputation Database ('vsv.m (NERDS), takes into account all
the available information regard - - »e.work entity (e.g. IP address) to cal-
culate the probability that it will ac® maliciously. The latter part is achieved
via the utilization of machine learning. Our experimental results show that it is
indeed possible to precisely _stin.. ‘e the probability of future attacks from each
entity using information & ‘out its revious malicious behavior and other char-
acteristics. Ranking the entiv. = 'y this probability has practical applications
in alert prioritization, .sser bly ot highly effective blacklists of a limited length
and other use cases.

Keywords: networ - security, alert sharing, reputation database, attack
prediction, alert ; riori."~ation, machine learning

1. Introduct..

With - ybe' -attacks increasing both in numbers and sophistication, a lot
of researc.. b .s bron done over the last years towards collaborative detection
mechar’ ns. >. a research varies from sophisticated alert data correlation and
aggre ;ation 1. echanisms to the construction of complex collaborative architec-
tures 'l. As 1 result, a plethora of alert sharing platforms and systems have
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been proposed!. Nevertheless, a more in-depth analysis of threat ¢ -arir z plat-
forms and systems shows that a number of challenges need to be au 'ressed
before such systems can be considered mature [1, 2].

First, we argue that one of the core issues is the large num? or ¢ € alerts, gen-
erated by the cybersecurity tools, an analyst deals with. Thi issv : is amplified
when considering additional data received via various sharing an. collaborative
platforms. In this context, data prioritization and summ .rizaticn are essential
for reducing the overwhelming amount of information pr. sented t » the analyst.
Indeed, prioritization was identified as one of the most imp. *+ar’ parts of cyber
incident handling processes in several studies [3, 4].

Second, the reasoning behind exchanging alert d. “= as w :ll as blacklisting)
usually comes with an implicit assumption that re ~ntly ¢ covered attacks are
likely to be performed again in a similar manner or by ."e same attacker. How-
ever, this holds only for a certain set of attacker. and att ick types, while others
appear to be non-repetitive or even one time ¢. 'v. ‘1. _ analyst needs to be able
to effectively recognize in which set an attacker b ~ngs to, in order to initiate
further actions that are relevant to the give. <et. For instance, the identification
of a persistent attacker leads to its automated .. ~cking, while an one-time-only
attack, on a critical asset, leads to furt., »r 1. _ 'igation.

Third, there are numerous blacklists . -.d other threat intelligence sources
as well as multiple alerts from secur.", mown “oring tools. Not only the volume
of information is high but some data ~re .crelevant or of low quality. While
collecting all relevant data is im, .. * * r a detailed attack analysis, in other
cases it is important to be able to q.'~kly comprehend the main properties of
the attacking source, so it is nossible to easily or even automatically assess the
source behavior and decide abouuv “he appropriate immediate action.

We argue that a well do ‘ened v ;thod of summarizing all known information
about a malicious netwe k enti. - an help to address the aforementioned issues.
To this end, in this r.tic]  we propose a machine learning based algorithm
to estimate the proba.™™ y th .t a particular entity (e.g. an IP address) will
repeat an attack ir the ne. future. We call this probability estimation the
Future Misbehavic - r . ~hability (FMP) score. The score represents an aggregated
knowledge about each en.ity and it expresses its expected behavior; allowing
also for the cc.npe ison between entities. The previous works on scoring IP
addresses or 1. “wr ks lack some important properties (such as prediction of the
future behs vior), « *ly allow the assessment of whole networks, or cannot use
some imp rtar ., input features.

The scu. ~ s a’ ey enabler for several network security applications. Network
admin’ ..ators « .n utilize it to prioritize the alert data they receive. For exam-
ple, i is com 10n to utilize alert sharing platforms to be alerted on malicious

INote Mat the state of the art utilizes a multitude of different terms to describe seman-
t -ally sim ar systems. Such terms include but are not limited to: Collaborative Intrusion
De. ~tior Systems (CIDSs), collaborative intrusion detection networks, threat intelligence
~haring platforms, network telescopes, etc.
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hosts in the network. In such a use case, the administrator watch - th- alerts
shared by others and if the reported IP address belongs to her crnstit. ncy, it
indicates there is a misbehaving (e.g. malware infected) host in the managed
network. Hence, the score supports the administrator’s deci ion nrocess (i.e.
which IP address to deal with first), especially in large const cuer :ies.

Besides alert prioritization, the score has practical applica. s in attack
mitigation and traffic analysis. A straightforward usage 5 to asremble entities
with the highest FMP score into a blacklist, which is then used to lock network
traffic from these entities. Furthermore, the FMP score me. = <o ¢ indirectly as
one of the decision criteria in spam filters, DDoS nitig-"*on devices or any
other algorithms recognizing malicious traffic by mu i~ .e cri eria. In addition,
the existence of an FMP score also offers new possi. lities ~¢ .raffic analysis. For
example an Intrusion Detection System (IDS) may app.,- more detailed analysis
techniques (which would not scale for all the t.. Fic) to he traffic belonging to
the highly-ranked entities.

At a glance, the main contributions of this pa. .~ are as follows:

e We introduce the concept of an advanceu ~eputation database system for
network entities to improve alert wvc. “»q and prioritization.

N

e We propose a generic method ‘or ra “king network entities by a Future
Misbehavior Probability (FMP) ~co. - a value that summarizes all known
information about an entit-" to exy “ess the level of threat it poses.

e We evaluate and compare differc. + machine learning approaches and sets
of input features to ide~*ity the most efficient ones, with regard to the
specific application s enario »f ranking malicious IP addresses. We also
evaluate how the FM ™ score an be utilized for creating predictive black-
lists.

The evaluation is L. > d or millions of alerts from a real alert-sharing sys-
tem. The results s 1ow tha. c¢he proposed method indeed creates a predictor
which is able to ¢ _cu. ~tely estimate the probability of future attacks per each
evaluated IP address. Mo.ecover, the predictor assigns scores smoothly over the
whole range be swee 1 0 and 1, rendering it well usable for ranking addresses and
prioritization. Ov . evaluation also demonstrates the advantage of having the
score assigr :d to e. ~h known malicious IP address when a blacklist of a limited
size needs to ! e created. The FMP score allows to create the most effective
blacklist p. - .ble “or any given size.

Th- .cmainc r of this article is structured as follows. Section 2 discusses the
state of the « 't in threat intelligence platforms and in methods of evaluating
reputa ion of .etwork entities. Section 3 provides context to our scoring method
b presenung a general model of an alert processing system and introducing
{1e repu ation database system NERDS. In Section 4, we describe in detail
tiL > gene ¢ FMP score estimation algorithm. Subsequently, Section 5 provides
the evaluation of the scoring mechanism along with a comparison of different
m .chine learning models and evaluation of one of the possible uses of the score
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— generation of predictive blacklists. Lastly, Section 6 concludes thi arti le and
outlines our future work plans.

2. Related work

Our work is related to existing threat intelligence platforme. A . -ief overview
of the platforms is provided in the following subsection. ¢ ubseqt ~ntly, we com-
pare our work with recent research on various characterist. s of ma .cious sources
and with the state-of-the-art approaches for evaluatir~ rep,.' ..on in the net-
work domain.

2.1. Threat intelligence platforms

Many platforms exist for cyber threat intelligence m. nagement and sharing
—both open and free as well as commercial ones. r.. ~mr’ s of open platforms for
exchanging data about cyber threats and indicauw. < of compromise are MISP [5],
Warden [6, 7], DShield? and CIF3.

The Malware Information Sharing Plattc.m (MISP) is an open source so-
lution for collection, storage, distribut’ - »nd sharing of indicators and alerts
regarding cyber security incidents. The . ai . goal of MISP is to share informa-
tion related to targeted attacks and - alwax  The features include a centralized
searchable data repository, a sharing . ~e.. anism based on defined trust groups,
and semi-anonymized discussion hoards.

The Warden is an open source , 'attorm designed for automated sharing of
detected security events. It enables CERTs/CSIRTs (and security teams in
principle) to share as well a- ... e use of information on detected attacks and
anomalies in networks or s rvices a. generated by different detectors — intrusion
detection system (IDS), hou. mots, network probes, traffic logs, etc.

DShield is a platforr . for collection and analysis of incoming malicious activ-
ities detected by thous nds of ¢r atributors. The contributing network operators
send alerts from pac’.et 1. ~re ike firewalls or IDS systems, DShield aggregates
and analyzes ther ~nd provides various statistics as well as blacklists of the
most dangerous L.etwoi.. * on its website.

The Collect” .. ntelligence Framework (CIF) is a cyber threat intelligence
management < yster 1, which allows to collect data, mostly indicators like IP ad-
dresses, FQDNs . «d URLs, from multiple sources. It allows to parse, normalize,
store, post proress a.ud query them and also to share them to others.

A list ~f ¢ mm ccial threat intelligence sharing and management platforms
includes. for ~a-aple, SoltraEdge, IBM X-Force Exchange, Facebook Threat
Exchs age, A'ien Vault Open Threat Exchange and many others [8].

T. e term :yber threat intelligence is usually understood as a way to en-
comnas. i~ -level information, such as description of techniques and proce-
c ures us~d by adversaries, information about malware or phishing campaigns,

2https://wuw.dshield.org/
‘https://csirtgadgets.com/collective-intelligence-framework
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or global trends in different types of threats. Nevertheless, most of he ¢ <isting
tools focus primarily on sharing of indicators of compromise, suc” as 1. licious
IP addresses, URLs or file hashes [8]. A recent user study [4] also agre. - that de-
spite the significant growth of threat intelligence platforms in t.e I st few years,
the most often used source of threat data are still classic blac liste (mostly lists
of malicious IP addresses and URLS).

These blacklists represent a trivial way to express » :putat’on of network
entities. Although they are easy to use they do not offer ¢ "anulari y and details.
The information provided by blacklists is only binary — an « ~tit= s either listed
or not. There are usually no details describing the t pe, i~ ' ~nsity or frequency
of malicious activities performed by the entity no. =y scere evaluating the
level of threat the entity poses or the confidenc. of its '.,ting, which would
allow to sort or filter them. Such information would . ~ very useful. Multiple
studies [4, 3] recognized the ability to prioritiz. threats and the ability to get
a comprehensive picture of the threat among e mc.. important requirements
on threat intelligence. In this context, this article . ~uses on collecting detailed
information about the malicious network e. “ties and on their scoring.

2.2. Evaluating reputation of network ¢ Tt .

This work builds on the knowledge o. various characteristics of malicious
traffic sources. These characteristics . a5 ~eel. studied in several previous works,
mostly in the context of IP addresses. . one such work Collins et al. [9] show
that devices in some networks are ~ore ..one to be compromised (e.g. infected
with malware) and cleaning up those ‘evices takes longer than in other net-
works®. This network proper+- is called uncleanliness and the authors propose
a method to quantify it us.ng dav about known malicious IP addresses from
different sources. The mea. ves of jpatial and temporal uncleanliness of differ-
ent networks are then v ed to p. iict which networks are likely to contain bots
or otherwise malicious add esse".

Shue et al. [10] »resc ted + similar work which focuses on the analysis of
malicious autonomw wus systews (AS). By using data from several blacklists as
well as their own < pam '~tection tools, authors show that some AS contain much
more malicious "™ addresses than others. While in most cases it is probably
caused just by poo security policies in those networks, there are also AS with
more than 80 7, ~' their address space blacklisted. Authors argue that these AS
are probab’y run ou’ - to host malicious activities.

The r m-v .ifor a1 distribution of malicious sources in the IP address space
was also stu ‘ed n a series of works on the so called bad neighborhoods [11,
12, 12 14], which is the term used for networks with high ratio of malicious
IP ac Iresses. The authors propose to aggregate IP addresses listed on various
blackli “s bv neir common prefix (usually of length /24) and create lists of pre-
f .es (networks) with too many blacklisted IP addresses. Such bad neighborhood
lacklists -an then be used in spam filtering algorithms. In these works, authors

‘Newworks in this work are defined simply as IP prefixes of length /24.




175

180

185

190

195

200

205

210

also analyze various characteristics of the bad neighborhoods. F r example,
in [12] they show that in case of spam sources, only 10% of th~ mos active
neighborhoods (/24 prefixes) are responsible for more than half of ai. *he spam
messages. In other works they show that the existence of be « niiehborhoods
can also be observed in data about other types of malicious a‘ -ivit , like attacks
on SSH, but that the particular lists of malicious networks are a.. ~rent for each
type of such activity.

In a later work [15] Moura et al. undertook research nto ten poral charac-
teristics of the bad neighborhoods. Using several datasets .o+ different types
of malicious activities, they found out that 40-95% ’1epe» “ug on the dataset)
of bad neighborhoods repeat an attack against the <2 .e t¢ "get within a few
days.

All the aforementioned works analyze the malicio. mess of the whole net-
works, usually defined as groups of IP addresses -ith the same /24 prefix. Some
of them propose a score to rate the networks. “ich s. _.ing methods are usually
based on the number of blacklisted hosts in a ne. vork. Such an approach is
simple as it utilizes the spatial correlation. ~mong the malicious IP addresses.
However, the scoring of the whole networks rc, mesents certainly a significant
issue and limits its applicability. For (waw -  in case of blocking the whole
network prefix many completely benign a.' < resses are blocked.

There are also several works stuc, .. = p1. perties of malicious traffic sources
at the level of individual IP addresses. “ha..g et al. [16] take 9 public blacklists
and analyze both temporal and 'a..-' haracteristics of their entries. They
show, for example, that the lists arc ~hanging quickly and that even the geo-
graphic distribution of malicions IP addresses around the world is highly non-
uniform. Another character .stics . ve shown in [17], where authors analyze lists
of TP addresses reported a. malicio s by various Google services. For example,
they show that 1% of t'.e mos = tive malign IP addresses are responsible for
48-82% of all attacks (der ending on the service attacked). They also found
significant correlations ™« wee . lists of addresses attacking different services,
i.e. in some cases r single « "dress is used to attack multiple services. Similar
characteristics of ! en. -ior of malicious IP addresses are observed in other works,
such as Wahid’s work [1s; or in our own previous work [19, 20].

Another se of wvorks that inspired our method are those on the topic of
predictive blac s’ mg [21, 22]. These works propose methods to explicitly pre-
dict which - 1alicio. * sources are likely to attack in a near future (in contrast to
classic ble cklis s, which only list those attacking in the past). The goal of the
proposed 1.. * aods 1s to prepare a blacklist for each organization which contains
those ¢ _w.ces tu. ¢ are the most likely to attack the organization network within
the n xt day. “hang et al. [21] introduced the concept of creating these targeted
highly ~redict ve blacklists and provided a method based on leveraging correla-
ti- uo amouyg sets of attackers targeting individual organizations. Subsequently,
foldo et . 1. [22] presented a method that significantly improved the precision of
g “erate . blacklists. It models the problem as a recommendation system which
~ombines several prediction methods.

Awchough the methods internally work with a ranking of attackers by their




Table 1: Comparison of previous methods for evaluating reputation of netwe k en’ ties.
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granularity | numerical | predic.'ve | . ighbor- | other

score - . hoods data
Traditional blacklists yes no ne ‘ no no
Scoring of networks [9, 11, 10] no yes ) yes no
Predictive blacklisting [21, 22] 1no no ves yes 1no
MISP scoring [23] yes yes 1) no no
FMP score (this work) yes yes s yes yes

probability of attacking the given target network. tuc onlv goal is to build a
blacklist of a predefined size (as a top-n list of such ~nked attackers). There-
fore, there is no evaluation by a score with a vrell definc 1 meaning. Moreover,
the attackers in these works are always whole /. ' nre xes, not individual IP
addresses, so the same disadvantages stemming ~om low granularity, as those
described for network scoring methods ab~ .1, as well.

A recently published paper [23] describes ~ work in progress on a method
for scoring individual IP addresses and *“~r identifiers (so called indicators of
compromise) in the context of the MIS.® t'.reat sharing platform. The score
is used to estimate whether an ind ~ator - still relevant or not. It is based
on indicator observations, assigned t.gs ~na reliability of data sources. The
score of an indicator is reset to it~ maxii. um value every time an observation of
that indicator in the wild is repor.. 1 ana it decreases in time by a predefined
formula. When the score reaches zero, che indicator is marked as expired and
can be discarded. However ... work is still quite incomplete. For example,
the meaning of values bet ,een the maximum and zero is not defined, and the
method for evaluating source -elial .lity has not been designed yet. Also, spatial
correlations among the aeighboriag IP addresses are not used in any way and
there is no attempt o exp’.cit » rediction of the future behavior.

Table 1 summar zes 1. no cant aspects of the previous methods for evalu-
ating reputation ir. ~ontrast to our FMP score. The high granularity column
shows if the scorc is as. ~ned to each individual TP address, not just network
prefix or other "u. e group of addresses. Numerical score expresses if there is
some numeric Jd ve ue assigned to each entity, or it is just a simple list pro-
viding only bin. - information about the entities (listed or not listed). The
predictive olurn depicts whether the method is based on explicit prediction
on futurc heb wior of the evaluated entities or not. The neighborhood column
shows whethe t) e method utilizes the correlations among neighboring IP ad-
dresse s or nc- The last column shows if the method is able to utilize any other
data han tho e regarding previously reported malicious activities.

The ~+' shows that each of the previous works lacks some of these aspects.
C ur prc ~osed FMP score is the first non-binary evaluation of reputation of
i dividue network entities which is based on prediction of future attacks. For
the |~ .iction, we consider not only the previous behavior of the evaluated
c.. .7 and its neighboring entities, but also other related information not directly
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derived from observed behavior.

3. Network Entity Reputation Database System (NEPTS)

To provide context to our work, this section briefly introd. s VERDS (Net-
work Entity Reputation Database System). NERDS storee infoi. ation about
malicious network entities and summarizes the pieces o’ inforn ‘tion into the
FMP score. NERDS is a component of a larger Cyber Th. ~at Inte .igence (CTI)
infrastructure. As a particular example of the CTI irfsti.. ' .re, we consider
an ecosystem of components which collect, analyz anc ..act upon network
alerts depicted on Figure 1.

The network alerts are collected by an alert ."“ari., component from a
plethora of network monitoring mechanisms, capable ¢  detecting and report-
ing malicious network activities. For instance, 1. ™ ho eypots, IDSs, network
behavior analyzers, log analyzers, etc. We uti'~e the alert sharing unit as an
example input component, since alert sharine eves ng are becoming popular,
widely deployed, as well as they usually si.. e a large amount of alerts from
diverse sources. At the same time they nrovide ata normalization. Neverthe-
less, the alert sharing can be complemel. ed 1 ieplaced by any other collection
component without affecting the presentec approach (provided sufficient num-
ber of alerts is collected to allow for e..>~tive application of machine learning
techniques). The collected alerts are stc-ed in an alert database. The database
offers a fast query interface to m. © uav. in the stored alerts either by a user
from a user interface or automatically v an analysis component. The analysis
component extracts relevant *~“wmation out of the alerts. Analysis results are
displayed to an expert (e.g CSIR1 ‘CERT) via a user interface, moreover, some
results are transformed inte ~ction in the Action component such as trigger a
Distributed Denial of € wrvice (.°7J0S) protection, issue an incident, notify an
operator.

While some piecrs 0. “for iation are straightforward to obtain from alerts,
for example by filte ng and aggregation, some remain hidden deeper and a more
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__ure 1: Conceptual framework of an alert processing system with entity database
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sophisticated approach must be applied to receive satisfying results. Ve ¢ nsider
NERDS as such an advanced analysis approach as it gathers availa®le ki.. wledge
about the history of observed network entities and predict their futui. hehavior
based on this knowledge.

In more details, NERDS consists of two parts — the entit. dat base and the
entity scoring. The entity database keeps a record for each ent.. - (e.g. IP ad-
dress) reported as malicious by one or more of the alerts The racord not only
contains meta-data about the observed alerts but also ad 'itional -zlevant infor-
mation from various external sources to broaden the visibin - of _ne behavior of
the entity in a more global scale. In case of IP addr sses. * "< information kept
in records include, for example, resolved hostname, o< -loc: tion, autonomous
system number or occurrence of the IP address oi. ~evers! - ablic blacklists.

While the entity database is a necessary prerequisite “he entity scoring is the
core part of the advanced analysis. The entity sc. “ing me hanism summarizes all
available information gathered per entity into scoir. .ad this score is assigned
per entity. The score represents a meaningful ana -ctionable information that
is utilized by the action components, for . -ample, to block traffic from most
offending IP addresses or domains, or by a user a. ~ctly, for example, to prioritize
investigation of reported incidents or to Yrua ' ‘ention to a prevailing issue. A
first idea of such a reputation database, . ~.uding summarizing the data into a
single reputation score, has been bri v, inti duced in our earlier work [24]. In
this work we propose and evaluate a } arti.ular method which can be used in
the scoring component.

4. Future Misbehavior P__. ~bility (FMP) Estimation

One important element « “NERT S is the scoring component, which estimates
the entity score based - a all tu. stored knowledge about an entity. Since we
believe that a well-uns erst od riechanism increases trust and utilization of the
score in real-world arplic ‘ion‘, we devote this section to a thorough description
of the estimation r ~chanism.

While our ms.n n.. *ivation is scoring individual IP addresses, the formal
description of t* methoa provided below is general to account for any kind
of network ide utific - that may be reported as malicious, e.g. an IP address, a
domain name, . ~ wutonomous system, etc. We narrow the generic concept into
a method f r scorin, IPv4 addresses in Section 5.

4.1. Generu. Cor ept

At a glan =, the input of the scoring component consists of two types of data,
(i) m ta-data about the reported alerts related to the entity (and optionally to
its closc =~ aborhood as well), and (i) complementary, relevant third-party
¢ curity information related to the entity. Such complementary information
i cludes, or example, the hostname, the Autonomous System Number (ASN)
or .. ~ _co-location data of IP addresses, the domain name entropy or the date
u. ~istration for domain names, information about the presence of an entity
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on public blacklists, etc. Both data types are stored and provided k_ the gntity
database which periodically gathers it from a multitude of source~

An output of the scoring component is a number, which expressc. the level
of threat (or maliciousness) the entity poses. We coin this as ~utu +» Misbehav-
ior Probability (FMP) score and we define the FMP score « < ap entwy as the
estimated probability that the entity will behave maliciously in an mcoming time
interval (prediction window).

The score is, therefore, a result of prediction of futu ‘e malic >us activities
of the entities based on all the available information ab. 't *.e entity. We
propose to use a Machine Learning (ML) technique .o de~" - a predictor since
(7) the amount of available information is large, (#7) he pred :tion model is not
straightforward to derive analytically and (4) th. nredi~* ¢ is expected to be
periodically adjusted to the characteristics of the lates. data.

An ideal predictor, capable of predicting v. ~ future precisely, would only
assign FMP score of 1.0 or 0.0, depending on ~hetun. Jhe entity behaves mali-
ciously or not in the prediction window. However, ** is impossible to assemble
such a predictor in practice. That is, any ‘~al-world predictor is only able to
estimate the probability based on information . ailable at the time of predic-
tion. Therefore, our goal is to design a ugu, . cision predictor, by the means
of minimizing the error of estimated prob. ! ility over all entities.

Note, that in practice it is usually ‘.. noss Hle to find out all malicious behav-
ior of an entity, since the predictor rec~ive. only the detected ones (via alerts
received from detection systems, . - * sult, it is only able to predict future
alerts related to the entity and not a.” actual attacks. The quality of the input
data in terms of accuracy and coverage has impact on the quality of prediction.
The better the input data, .ne mc e precise and useful is the FMP score. Nev-
ertheless, the principle of © = scorir ; method is robust enough to work with low
quality data as well.

The FMP score m' y br general, predicting any kind of malicious network
behavior, or specific to . * artir alar type of activity. For example, there may be
an FMP score in th . contex. ,f DDoS attacks and a different one in the context
of port scans, eac 1 . “mating probability of different types of behavior. It is
also possible to compute .he FMP score for specific targets, e.g. for specific
networks or tyvoes f services. When it is needed to distinguish multiple such
FMP scores, « ir iex is used, e.g. FMPgc.n. In the rest of this section, we will
not differer .iate L. "ween these variants, since the only difference is in what is
considerer a 1 alicinus behavior that should be predicted.

The lew, * 1 of * ae prediction window should conform to the particular appli-
cation ..c case. [he longer time preference the application has the longer the
wind w. The = can be applications requiring both short and long-term expec-
tation ~f enti y’s behavior separately, thus multiple windows lengths must be
pr -w.cted w parallel. In this work, we consider 24-hour prediction window as a
11edium . »ngth that satisfies majority of applications (which is also in line with
to~ previous works [21, 22]).
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4.2. Formal definition

The main input of the method are alerts reporting malicious ac ‘vity ¢ <ome
entities. Alerts may have different formats and contain various irforme on, but
for the purpose of our work, we assume that each alert cont .ns ~* least: (i)
time of detection, ¢, and (%) identification of the entity repor. 1 a source of the
event® (e.g. source IP address), e. Preferably, it should als~ com..': (i) type
or category of the event, ¢, (iv) event volume, v (its exac mean. g depends on
the event type, e.g. a number of connection attempts), a1 1 (v) id mtification of
the detector, d. In the following text, we assume tha* aler.. Jntain all these
five attributes, but the method may be applied, witl som .. nitations, utilizing
only the first two as well.

An alert can therefore be defined as a tuple a - (¢,.,¢,v,d). A set of all
alerts available is denoted as A. The time at which the >rediction is computed
(current time or prediction time) is marked as v, The prediction window, T,
is the time window of length w, immediately ~Nowiwug to, T, = (to,t0 + wp).
The predictor uses information about the nast =1: s from a history window,
T = (to — wp, to), where wy, is the history v. ‘ndow length.

For a given prediction time tg, a ferture veco. 1 Xe 1, = (21, T2, oo, Th)e,ty 1S
computed for each entity e. The featur ve’ oy consists of various alert-based
features, computed from alerts received wiv" in the history window, and the non-
alert features, extracted from other < 7a.'ablc information related to the entity
at to (see Section 4.3 for further discuss’on of features).

The output to be predicted (c. S8 1ai 1), Ye t,, 1S binary; depicting whether
or not there is an alert reporting the e. “ity within the prediction window:

1 1 =t a4 = e
Yoy = { if Ja A ra=(te ), t €T, (1)
L ther sise

If an FMP score i* sor.e context is to be computed, the condition above
becomes more restrict, ~ e.g. the alert category must match a given value.
Samples with y.;, -1 are . .d to belong to the positive class, the others form
the negative class

Now, the task is to cre«ce an estimator which, for a given feature vector x. ¢,
is able to accu atel = estimate the probability that .., = 1, i.e. that the entity
will be reporv. ! 2 malicious in the prediction window. This task is known as
binary clas: proba. ity estimation problem in the machine learning community.
That is br sica’ y a binary classification problem where we are not interested in
final class « < .gnn 2nts but rather in the probability of each class.

Ov’.ut of ¢ estimator is denoted as g, and represents the estimated
probe oility o1 the positive class given the feature vector,

QE,tU ~ p(yeyt() = 1|X€,t())' (2)

° 1. case an alert contains multiple sources it can be replaced by multiple alerts with a
sw, . ource and equally distributed volume.
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To create the estimator we follow the common supervised mack ne I arning
process. First, we create an annotated dataset. Each sample i~ the 'ataset
describes a particular entity at a particular time. We select one or . ore time
instances in which the features are computed. We denote the sr . o1 shese sample
times as Ts = ti,...,tm. A pair of feature vector and class “2bel (Xe 1y, Ye,t0)s
is then computed for each entity e € E at each sample time ty, - T}, creating
a dataset of |E x T,| samples. From now on, we will ind x the samples of the
dataset by ¢ for more concise notation.

The dataset is then randomly split into a training and . *e<t’ag set and the
first one is used to train the model®.

The metric suitable for training and evaluating ‘F moc el in this type of
problem is the Brier Score (BS). In our binary ca.  with ~lasses labeled 0 and
1, the BS can be described as a mean squared difference ~f predicted probability
of the positive class and value of the real class:

1 N
BS = N;(f Jgt) (3)

where N is the number of samples. 1... 7 takes values between 0 and 1.
Lower values signify a more accurate pred ‘c .ion.

After the model is trained and . . ~erfc mance is acceptable, it is used to
assign FMP scores to new samples o. ne. ork entities. For each new entity
to be evaluated, a feature vecto: .. ~~m1.ted from all related alerts and other
available information, and it is pass. 1 to the trained model. Its output, g, is
then directly used as the FMP score,

FMI (e, to) = Yeto (4)

A change in behavi r of ma. :ious entities as well as in the configuration
of detectors influence ne ¢ .ara teristics of alerts. Therefore, the model should
be re-trained on new daw. whr aever the performance of the predictor decreases
below a defined th- shold.

If multiple F} .P sce -=s for different contexts are required (e.g. for different
types of networ' attacks), a separate model must be trained for each such
context using .iffer nt training data. Samples in the training data are labeled as
positive class (y, - - 1) only when there is an alert of given type in the prediction
window, al rts of ou. er types are ignored (samples have y; = 0). Nevertheless,
the input reat .res - ill contain information about all types, since there may be
correlations . ~twr on different attack types that can be exploited by the predictor
(e.g. "ogin a*tempts are often preceded by port scans [25, 20], so information
abou scans ¢ n be used to improve prediction accuracy of login attempts). Of

6 We dc¢ not recommend any particular model in this generic part. Usually multiple models
w. h vario s configurations need to be tested and the one performing the best in the particular
applic....on is chosen.
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course, information about different attack types should be treated ~s d derent
features.

4.3. Feature selection guidelines

As already noted, a feature vector for our scoring methoc. ~en rally consists
of two types of features: (i) the features based on previems ale. ‘s related to
the entity or similar entities (e.g. nearby IP addresses) and (.") the features
based on other data sources than alerts (e.g. presence of “he enti y on a public

blacklist).
The particular set of features needs to be designe { spe .. ~ally for each class
of entities and according to the input data availaL.’  Hor ever, at least for

the alert-related features, we provide basic guide. ~es «..u examples that we
expect to work well in most cases. We propose the uti. zation of the following
characteristics as the basis for alert related featu ~s:

e Number of alerts

e Total volume of reported attacks

Number of distinct detectors repoi ing alerts
e Time since last alert

e Average and median of inte  ~'e he ween alerts within the history window

The first three characteristics can L computed per different time intervals
(e.g. the last day and whole ... ~ry window), each interval resulting in a sepa-
rate feature. Another apprrach is 1) create time-series of these numbers (e.g. a
number of alerts in each day « -er t} ¢ history window) and use the Exponentially
Weighted Moving Aver .ge ‘EW..1A) of the time-series as a feature. EWMA,
which is often used a a s mplr, yet effective, predictor of the next value in a
time-series, can be ¢ sfinec as:

T+ = QX + (1 - O[).i‘t_l, (5)

where z; is val e of the time-series at time interval ¢ and o € (0,1) is a
smoothing fac ~r. aigher values mean more weight is given to recent samples,
low values - wve mo. ~ weight to older history.

In add cion since we are interested primarily in whether or not there will be
an alert in ' prr diction window, not in the number of alerts or total volume,
it is us .. to u. EWMA of a binary variant of the time-series, which contains
1 if t' ere are ny alerts in a given day, 0 when there is none.

W. ~u the aforementioned features are computed only from alerts reporting
th _ glven entity, they only capture temporal characteristics of the entity behav-
iw. If s, atial correlations are expected for the given type of entity, i.e. the
b havior of nearby or otherwise similar entities is correlated, an additional set
of features can be computed to allow to leverage these correlations. This set of
fe cures is the same as those above, but it counts alerts related to any of the
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neighboring entities instead of just the evaluated entity itself. For xar ple, in
case of IP addresses, the same set of features can be computed f~r I+ ddress
itself and for the whole /24 prefix it belongs to.

Finally, some of the features reach very high values (e.g. m .nbet of alerts or
their total volume) which is not handled well by some machir - lea ning models.
Moreover, it is usually not important whether there was 1000 or . ‘01 alerts, but
1 or 2 alerts are a big difference, although the arithmetic .afferer-e 1s the same.
It is therefore recommended to use a log-like nonlinear ti ansform tion on most
of the features, which reduces the high values while keening ~m-~", differences in
small values still significant. In particular, we recomn end t- -1se log(z+1) for all
features meaning a number of something. For featurc - @ scrit ng time intervals,
exp(—z) should be used instead to avoid a proble.. on ir©- .te intervals in case
there is no previous alert. The function maps infinity o 0 and short intervals
to values close to 1, which also makes it consisv. °t with >ther features that are
zero for previously unseen entities and higher “~r hig’ Iy active ones.

4.4. Unbalanced data and recalibration

Many machine learning models exkihit poo: performance when the input
data are highly unbalanced, i.e. when . un' ei> of samples in each class differ
significantly. We expect this will be the cas in most applications of our method,
since the entities actually detected a. .. ~lic.ous within the prediction window
will be just a small fraction among all « valuated entities. Therefore, there will
be significantly more samples of 1. ~auv class than those of positive class.

Generally, there are two main apy. »aches to balance a dataset. A simple
and commonly used one is te ~hsample the majority class. The other one is to
supersample the minority - .ass, e1 her by duplicating the minority samples, or
by creating new artificial s.. ~nles r 2ar the original ones (SMOTE [26]). Super-
sampling is more comp’' cated a. . introduces some drawbacks, so it is usually
chosen only when the Jate et i© so small that there would be too few samples
left for training afte” su. amr.ang. This is however not our case. It is usually
not an issue to acc -ire millicas of alerts, so we use the subsampling approach.

Subsampling nouw.." only be applied on the training dataset, the testing
one should rete® the original distribution. However, this violates the basic
machine learn’ag a sumption that the training and testing datasets follow the
same distributic ~ resulting in skewed probability estimates (see [27] for detailed
discussion) Fortuu. "ely, as shown in [27], this skew can be easily recalibrated
by transf rmi g th: output of the model learned on subsampled data, ¢, by
the followin,, forr ala:

A~ /BQS
Y B — g+ 1 (6)
whei [ = %—t and N, N~ represent the number of samples of positive
ad nega ive class, respectively, in the original dataset (assuming negative class
is tu. _.ajority one).
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Alternatively, if an implementation of the selected machine lea ~ing model
allows weighting of samples, it is possible to set weight of all neg~tive . ~mples
to 8 instead of subsampling. However, in the evaluation below, we u. the sub-
sampling approach with recalibration as it means smaller date et « nd therefore
faster training while results are almost the same.

5. Evaluation

In this section we evaluate the general scoring n~~hawn..  (introduced in
Section 4) by applying it on real data about netvork .. *s. In particular,
we consider a system as described in Section 3 whic. cceiv s alerts from var-
ious network security tools. Its NERDS subsyste. sto... information about
reported IPv4 addresses and assigns the FMP score to 2ach address based on
the estimated probability of receiving another ai. *+ relat :d to the same address
within the next day. Our goal is to shed light «. how vhe scoring mechanism is
deployed, to confirm and quantify the assumntion ~ -epetetive offenders and to
show prediction results under various setting - Last but not least, we elaborate
a practical application of FMP score — bvilding p. .dictive blacklists for blocking
traffic of IP addresses with the highest | ~ob .viucy of being malicious.

5.1. Source of data

The data used for evaluation c~me fro m the Warden system — an alert sharing
tool and community run by CES.™ 1 (WREN of the Czech republic). The
alerts are JSON messages reporting on various types of network attacks or other
security events. The attacl. . 1 events are detected by various monitoring
tools (honeypots, netflow .nalysis systems, IDS, etc.) deployed in CESNET
and several other networks. Tach lert contains information about at least the
time of the event, its r stact caicgory, source IP address(es), identification of
the detector and usv (ly .so ome measure of attack intensity, like number
of connection atter pts. ™ *.erefore satisfies all the requirements stated in
Section 4.2.

5.2. Evaluatior . ting

Based on - str.istical analysis and our previous experience with the data
(see e.g. a “echun. sl report [19]), we decided to set the length of the history
window, 7 5, t. 7 days. The length of the prediction window, wy, is 1 day.
Therefore, wr are going to estimate probability of receiving an alert about a
particu’~~ IP « ' ress within the next 24 hours, given information about alerts
from he pre ‘ous week.

5.2 7. Lul.oet preparation

For 1. e evaluation, we took three months worth of data from Warden, from
S ntemb' r to November 2017. In total, the dataset consists of 155 million alerts
abouv 0.3 million TP addresses, reported by 23 different sources. The alerts
re u. . different types of malicious traffic (attack category) and the vast majority

15




555

560

565

570

575

580

585

of them are various types of scanning activity, dictionary attack or :xploit
attempts. For the evaluation, we group the alerts into two broa cate_~ries —
port scans (scan) and unauthorized access attempts (both dictiona. - attacks
and exploit attempts, access). Therefore for each IP address swo FMP scores
are computed — FMPg.,, predicting alerts of the scan catege v, a .d F P access
predicting alerts of the access category. Other attack types, . ch as DDoS
attacks, are reported to Warden only occasionally and e e disrrgarded in this
work.

We create the dataset by regurarly sampling the entity « *+ak se at 24 differ-
ent prediction times (¢p) within the three months. A, eack “ime t(, we account
for only TP addresses that are reported by at leas. o ¢ ale t (of given type)
within the history window T} of one week?. Fo. ~ach ~* . an IP address, a
feature vector x; is computed and a class label y; is as.“sned.

We therefore only consider the addresses tha. has alrr ady been reported and
the score thus evaluates the probability they . -1l be _ported again. Theoreti-
cally, it is possible to estimate the probability ot .. w occurrence of previously
unseen addresses as well, using information ~om alerts about other addresses in
the same prefix, maliciousness of the ASN and  “untry, and the supplementary
features not based on alerts, but such s. “na. . not evaluated in this paper 2.

In total, we got 12.3 million samples re. ed to scan alerts (the scan dataset),
765,000 samples related to access alcv. (the access dataset).

From each dataset, a random subse o1 amples is put aside as testing data
(600,000 in scan dataset, 100,000 . .. dataset). The rest is used for train-
ing®.

5.2.2. Features

The set of input featu. ~ comp ted from the alerts observed in the history
window is selected accor ling to ‘} e general guidelines presented in Section 4.3.
For each alert categor (sc.n and access) the following features are computed
for each IP address (ta.’~ s int , account alerts reporting the given IP address):

Number of a’. ~ts in the last day

Total number of ¢. ~nection attempts (attack volume) in the last day
Number ¢ . a *ectors reporting the address in the last day

Numbe: of a’2rts in the last week

Total umbe of connection attempts (attack volume) in the last week

S G WD

Nur oer Jf detectors reporting the address in the last week

"P] ase note *hat the history windows partially overlap

8If coring ol previously unseen addresses is needed, we recommend to build a separate
model 1. * it. ¢ would be hard to train a single one for both cases due to the extreme
ir saiance in numbers of addresses observed and not observed in the history window (there
¢ e 232 T ddresses and just a few millions are known as malicious). Moreover, the model for
u observec addresses can be much simpler, as it can drop some of the input features, which
are . ' zero for such addresses.

9 We keep the training datasets large compared to the test ones since they will be heavily
su ,sampled in the next phase.

16




590

595

600

605

610

620

625

7. EWMA of number of alerts per day over the last week
EWMA of total number of connection attempts per day ove: *he la. © week

@

9. EWMA of a binary signal expressing presence of an alert /0 or . in each
day over the last week
10. Time from the last alert (in days)
11. Average interval between alerts within the last weel “n da, ~ infinity if
less then two alerts were reported)
12. Median of intervals between alerts within the last \ 2ek (ir days, infinity
if less then two alerts were reported)

In order to leverage spatial correlations (i.e. the ~k crvaf on that the mali-
cious IP addresses are often close to each other ii. P ad» ss space), a similar
set of features is also computed by taking into accoun. ~ll alerts related to the
same /24 prefix as the evaluated IP address. .™is pref : set contains features
1-9 from the previous list and also two new o. ~s:

e Number of distinct IP addresses in t° . L. ua 1eported in the last day

e Number of distinct IP addresses in the pi.Sx reported in the last week

Because there exist significant correle “ic as between scan events and access
attempts, we always use features ¢ .~nute' from both scan and access alert
categories (as separate feature sets), 1. ga. "less of which alert category is to be
predicted.

Another two features utilize date. ~bout autonomous system numbers (ASN)
and geo-location data. As shown in multiple previous works (see Sec. 2), the
portion of malicious IP ad-ies. - in different countries and ASNs differ sig-
nificantly. For each IP ad wress, w« determine into which country and ASN it
belongs and use the correspo. dine maliciousness rates as input features. The
rate is computed as t} 2 nv nber of known malicious IP addresses (i.e. those
with at least one alert = t’.e las, week) in that country or ASN divided by total
number of addresses assig.. > o that country or ASN.

In total there .. 48 alert-based features.

These features are co. nlemented by several features not based on alerts. All
of them are bi» ar, taking a value of 1 if given condition is met, 0 otherwise.
First, presenc - of +1e IP address on 5 public blacklists'®, and a list of dynamic
IP ranges'! is ¢ ~ked. Next a hostname associated with the IP address is
discovered via « DN query and several hand-written rules are applied to it.
For exan,, 'e, we s arch for keywords like “static”, “dynamic”, “dsl”, or look if
the IP =ddres. *< encoded in the hostname. This results in another 4 features.
All t!1s infc. mation is gathered shortly before the prediction time t3. The
reaso. for est nating whether the IP address is dynamically assigned or not is

OUCEP .OTECT, blocklist.de-SSH and Spamhaus PBL, PBL-ISP, XBL-CBL; we also
che %ed ¢ veral others, but there are almost no overlap in IP addresses with our dataset,
which renders them useless for the estimator.

© e aBS DUL
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the expectation that the host behind a dynamic address may chang - sor a after
the attack was detected, which intuitively lowers the expectatio» of 1, cating
attacks from such addresses.

In total, a vector of 58 features is computed for each IP ad .res and predic-
tion time.

5.2.3. Preprocessing

The data in both datasets are highly imbalanced. O1ly 16.5% ), samples be-
long to positive class in scan data, in access data it is enly ° 197, We therefore
apply subsampling of majority class (the not-detecte one , = 0) on the train-
ing dataset as described in Section 4.4. This reswm ~ "a 3.& 3 million training
samples in scan dataset and 107,000 samples in ac ~ss d * .set.

Next, values of most features are non-linearly trawn. ‘ormed as described in
section 4.3. Features expressing number of aler. connr ctions or detectors are
transformed by log(z + 1). Features expressi._ time .atervals are transformed
by exp(—x). Other features are numbers between ™ and 1 or binary tags and
do not need any transformation.

5.3. Model fitting

Subsampled and transformed tr-ining (ata are then passed to a machine
learning model to train. The goal is t. w. ~im.ze the Brier score, i.e. to estimate
the probability of the positive class with smallest average error over all samples.
Models are trained separately for . ~an a.d access data.

Finally, the test dataset is passed to ach trained model to get the estimated
probability of positive class f~ ~ach sample. These estimations are transformed
by the recalibration formu’+ 6 ana “hen the results are evaluated.

5.4. Predictor evaluatic 1

First, we show pec forr.anc' of various machine learning models, then we
evaluate impact of v .rious et , of features to see if and how much each of them
improves the resul .

5.4.1. Machine .c. ning models

After an “aitie study and experimenting with various machine learning
methods we iden. “ed neural networks (NN) and gradient boosted decision trees
(GBDT) 2, the most promising ones. We evaluated many variants of NNs with
up to th. ~ ¥.dde . layers and several configurations of GBDTs (we used the
zgBoost imple. >« tation [28]). Table 2 shows Brier scores of some of the models
for be ch datc -ets.

T. = neura networks have 2 or 3 fully connected hidden layers, each with
58 »~des ["'_¢ number of input features) and rectified linear unit (ReLU) as the
¢ ctivatic » function. The output layer is a single node with sigmoid activation.
\ e also t ied different numbers of nodes and activation functions but the results
were ..y similar or worse than the results presented in this Section.
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Table 2: Brier score of different models over testing set of scan and access datas ‘ts

scan | access
NN, 2 layers 0.0646 | 0.0549
NN, 3 layers 0.0646 | 0.0542
GBDT(100, 3) | 0.0671 | 0.0529
GBDT(200, 7) | 0.0628 | 0.0507

The GBDT models consist of 100 or 200 trees w'.'. man...um depth of 3
or 7, respectively. We tried other combinations as v ell » .u he results are not
surprising — Brier score slowly gets better as model cu...plexi y increases but at
the same time the training time increases significan.”

The training time on the scan dataset, using 2 Cr J cores of an average
laptop, takes around 1 hour with GBDT(200, ,, wod |, while it is below 15
minutes with the simpler GBDT model and the NN pased models (training on
access dataset is finished within a minute fo= ~1 -~ ,odels, because the dataset
is much smaller).

All Brier scores in Table 2 are clos~ +a zero, meaning a good precision of
probability estimation.

A crucial requirement on the F'TP scd e is that it actually approximates
the probability of encountering anot."e. ~leit from the same address. While
this characteristic is already covered b, the Brier score, it is also possible to
illustrate is visually. Figures 2 a. 1 5 suow probability calibration curves of
all the four models over both datasen. These curves (sometimes also called
reliability curves) show the '’ '~ibution of real classes within bins of samples
with similar estimated pre’ability »f a particular class (the positive one in our
case), §;. In other words, s. ~vles ire binned by their value of g; and for each
bin a point is drawn. I’s haorizo.. al position is given by the mean of §; within
the bin, vertical positi .n is :que” to the fraction of samples within the bin whose
true class is positive (y; — 1). f the estimator works well, i.e. its output indeed
approximates the - "obability of positive class, this fraction should be close to
the mean of the L .m, a.. ' thus the resulting line should be close to the diagonal
(y = =).

We can se . ths; all models perform very well on the scan dataset. It is
slightly worse o. access dataset, especially at higher values of § (approx. be-
tween 0.5 .nd 9.9). From the histogram below the calibration curves, which
shows th’ nur.ber ,f samples in each bin, we can see that the number of sam-
ples in this 1. ~ee .s quite low. This is mostly because access alerts are an order
of ma ,nitude less common in our dataset than scan alerts. Nevertheless, the
curve are stil quite close to the ideal line so we consider estimations of all the
models - ve . ple.

To il'ustrate the importance of recalibration by formula 6, we also show how
t 1e calibr wtion curves look like before the formula is applied — showed as dashed
line * i» digures 2 and 3. In such case the estimators are highly biased and

~<timated probability does not match the real one. For example, when the
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Calibration plot (scan dataset)
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Figure 2: Probability calibration curve o. 4 « Fercnt models over the scan test dataset.

“hration plot (access dataset)
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Fig o: Probability calibration curve of 4 different models over the access test dataset.
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uncalibrated estimator outputs 0.6, the curve shows there is only ~bo ¢ 20%
chance of seeing an alert within the prediction window, contrary tr the c. nected
60 % chance.

In many use cases the FMP score will be used together viti. a threshold
(either a fixed value or got by a top-n approach) to split ‘P ¢ idresses into
“good” and “bad” ones, e.g. to generate a blacklist. This redu ~s our binary
class probability estimation problem into binary classifics J1on.

It is important to note that the primary goal of our method s not to cre-
ate a perfect classifier, as the input data are surely not s.®<ic .t for accurate
prediction. This is because behavior of malicious 7 ctors - affected by many
factors not known to the model, including such thin < ’.«e r: ndom selection of
targets in automated scans or attacks. Therefore, ™ mo~* _ases it is only pos-
sible to estimate the probability — which is our main ¢ ~al and we evaluated it
above. Nevertheless the metrics used for evalu. “ing bir «ry classification tasks
are generally well understood and can provic - furv.. . insight into the model
performance.

A common way to visualize results of a . nary classification is using Receiver
Operating Characteristic (ROC) curves. The. are shown for the evaluated
models in Figures 4 and 5. An ROC « wve .0 ws the trade-off between false
positive and true positive rates as the valuc -« the threshold changes. In our case,
true positives are the addresses clas. .. 1 as “bad” (i.e. blacklisted) which are
then indeed reported as malicious with n ti.2 prediction window, false positives
are those which are not. The clo. .- = rve gets to the upper-left corner, the
better is the classifier.

All the curves are quite smooth and very similar to each other. The only
significant difference is bet veen e datasets, where scan alerts appear to be
more easily predictable th. » access alerts. For example, when the threshold is
set to achieve 10% fals posi.. = rate, we can capture over 80 % of recurring
scanners. Recall we  aly .ncluded IP addresses that were already reported
within the history wina. = Als , note that false positive here does not necessarily
mean blacklisting ¢ legitim. 2 IP address, the address may still be malicious,
just not attacking an, ~f the monitored networks within the prediction window.
Therefore, it mav be jus. a wasted entry in the blacklist. This enables us to
move the thre nolc to the area of high false positive rates, allowing to block
almost all rec.. ir s attackers without a significant impact on legitimate traffic.
The only cr st is a “~ng blacklist. More detailed evaluation of the blacklist use
case is prr sent d in Section 5.5.

Overal, 'y Br.er scores, calibration plots and ROC curves, all evaluated
models ,orforn, sery similarly, GBDT being usually slightly better. Therefore,
all fu ther ev. 'uation is performed with only a single model — GBDT(200, 7).

5 ... Feuwure sets

To se whether all features are indeed useful for prediction, we evaluate the
s’ ~cted nodel with different sets of input features. Every time, the model is
trainea and tested on the same datasets as in the previous section, just with
sc ne of the features removed from feature vectors. The resulting ROC curves
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are shown in Figures 6 and 7. The basis is formed by the features cor nutr d from
alerts of the same category as the one predicted and only about *he e¢. nated
address (i.e. not other addresses in the same prefix). These featui. labeled
same cat., are always enabled. We can see that even these basic rea vres provide
quite good results on both datasets. Another four curves sh w p rformance of
the model when different sets of features are added to the bas. ~une: features
computed from alerts related to IP addresses in the same ;24 pr-fix (labeled as
prefiz), features computed from alerts of the other categor 7 (other at.), features
evaluating rates of malicious IP addresses in the given co. ~trv und ASN, and
the complementary data not related to alerts (i.e. Jreser ~ on blacklists and
hostname-based tags, labeled here as tags). Finally t' ¢ las, curve shows the
performance when all these feature sets are enable ' (i.e. **_ same as presented
in the previous section).

We can observe that all feature sets have 1.. asurab’: effect on the results,
although sometimes very small. The least use. ! see.. . co be the other category
set of features in scan dataset. That means the .'~rts of the access category
are not relevant for prediction of scan ale. ~ 'I'his can be easily explained by
the fact that most scanners in our dataset ai. mever reported as performing
access attempts, both because of the ci rac, . { these attacks (most of access
attackers also performs scans, but not a. scanners try to access the scanned
devices) and the overall disparity in . nuw ber of alerts of those categories in
our dataset. Indeed, when we look at RUCZ curves of the access dataset, the
alerts of the other category (i.e. . ~uw., " ‘roves the results very significantly.

A similar but reverse effect can . observed with the prefix features. Ad-
dition of features computed from alerts of the whole /24 prefix improves the
results significantly in the can « taset, but there is only minor improvement
in the access dataset. W. explain this by the lower number of access attack
sources in our dataset, ¥ hich 1. ~= 1s there is a lower chance of observing many
such addresses in the ame prefix, so the predictor can rarely use this type of
correlation.

Another set of f atures . lizing spatial correlations, the ones based on geo-
location and ASN da ~ show almost the same effect as the prefir features on
the scan dataset On the access dataset, they provide slightly better results,
probably becar se t. e grouping of addresses based on country and ASN provides
much larger g. 0 than /24 prefixes, so there is higher chance there are multiple
attacking a .dresse. in the same group.

The le .t se’ of features are the tags obtained from supplementary, non-alert
data. We .~ 1 ser that in both cases presence of these features improves the
results L.gnifica. Jly. Unsurprisingly, combination of all the features provides
bette results “han any of the feature sets alone. Overall, we can conclude that
all of \ne feat wre sets prove to be useful.

.b. Usw 9 FMP score to create predictive blacklists

™ th'5 section we evaluate one of the possible use cases of the scoring method
~enerating blacklists of a user defined size. In this use case a list of IP addresses
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Figure 8: Blacklist size as a function of threshold «~!-~ -~ Jlied on FMP score. Each line

corresponds to the blacklist generated for one of tn.. *hree days.

with the highest FMP score (a blacklist) =+ created at the end of each day and
used to block traffic'? from these aa . sses 'uring the next day.

The size and restrictiveness of the bla tlist can be controlled by the user
— either by taking a fixed numt - ¢ +h. worst IP addresses, or taking all IP
addresses with FMP score greater ti. ~ a fixed threshold. Assuming the proba-
bility estimation is accurate, it is guaranteed that such blacklist has the highest
hit count possible with the givew 'ength of the list. Following [21, 22], we de-
fine hit count as the num! ~r of IP .ddresses on the blacklist that are correctly
predicted, i.e. the IP is indec ' d tected and reported by an alert within the
prediction window. W als , define hit rate, which is hit count divided by the
size of the list.

In this section "ve evai. ~ e the effectiveness of blacklists generated using
FMP scores.

We took data from tu. e days in the first half of December 2017, i.e. shortly
after the data v sed or training. For each day, we computed feature vectors of all
addresses rep. “ted within the previous week and assigned them FMP score using
the estimat r tra.. ~d in the previous section (GBDT(200,7) with all features).
Then, we ene ated a list of IP addresses for each day, sorted by FMP score in
decreasing ~r .er. "lacklists are generated from these lists by taking the first N
entries  all e..’ " wes with FMP score greater than or equal to a fixed threshold.
Figur : 8 sho. s the relationship between the threshold and the size of the list
for ea. h of th days and datasets.

Tartne., we only use the access dataset, since unauthorized access attempts
¢ re more severe events than ordinary scans and it makes more sense to block

apply rate limiting or any other restrictive measures, depending on user’s needs.
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Table 3: Hit count, hit rate and fraction of attackers blocked by blacklists of ¢ ffere’ ¢ sizes

N blacklist T | hit count | hit rate | % of ati. “kers
FMP | 0.9 100 | 100% 2.3,
100 | GWOL, - 83 83% 10%
GWOL, - 71 1% 1.6%
FMP | 0.68 443 89% RS/
500 | GWOL, - 236 47% 5.4%
GWOL-, - 233 47% 5.3%
FMP | 0.18 862 427 197%
2000 | GWOL4 - 650 31% 14.9%
GWOL; - 579 | 29 50 | 13.2%
388444 | uceprotect - 463 0.144?\‘ 10.6 %
8063 | bl.de-ssh - 336 | 4.2% 7.2%
1503 | bib - 0l L7y 1.6%

them or apply some strict rules on the relatel traffic.

We evaluate hit count of FMP-baser” '~cklists of different sizes N and com-
pare them to blacklists created in a mor. tr .ditional way.

As a baseline we created black! s frc n the same data (i.e. alerts from
Warden) but using a basic method — *sv. o vhe most active attackers reported
by all the detectors contributing to the alert sharing system within a history
window (called GWOL, global wors. ~ftenuer list, in [21, 22]). We generate these
lists using two different lengths of the ..istory window, one day (GWOL,) and
7 days (GWOL7). Similarly ' . -r approach, the GWOL lists can be generated
with any number of entries so we a1 rays compare an FMP-based list and GWOL
of the same length.

We also compare t} cse lists ./ith three real third-party blacklists, namely
UCEPROTECT, blor list de-S3H (bl.de-ssh) and BruteForceBlocker'® (bfb).
These lists have fixe i size ~nc are based on different input data.

Table 3 shows r ~formance of all the blacklists. The FMP-based and GWOL
blacklists are gencratea *  taking top IV IP addresses, for N being 100, 500 and
2000. The colv.... labeled as T shows which FMP threshold corresponds to
given size of t'.e bl cklist. In other words, the list contains all IP addresses with
FMP access > 1. 7 he hit count column shows the number of addresses attacking
in a given .ay that would be blocked by the blacklist (number of hits). Hit rate
is simply it count divided by N. It shows proportion of the blacklist that was
indeed used « b',ck some attacks. All numbers in the table are averages over
the t} cee da; s.

G nerally, smaller blacklists have higher hit rate, which is expected since
thev co. "~ (P addresses with the highest probability of future alerts (or most
¢ tive ¢ es in the past in case of GWOL). The FMP-based blacklist with 100

1Bhttp: //danger .rulez.sk/index.php/bruteforceblocker/
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entries is especially efficient as all of the listed addresses indeed att: ~ked m two
of the days, in the third it was 99. In all cases, the FMP-based blacs. ~ts are
significantly more efficient than any of the GWOL ones by means o. “it count
and hit rate.

On average, there were 4,376 distinct attacking IP address <in‘ ach uay. The
last column shows how many of these attackers were blocked by ach blacklist.
There it is important to note that around 60 % of atta xers ir each day are
“new”, i.e. they has never been detected in the previi us week so their at-
tacks are almost impossible to predict. Achievable maximu. » of Jhe fraction of
predicted attackers is therefore 40 %. None of the Hlack! *s get close to this
maximum, but still, the FMP blacklists are significai ‘1~ oett r than the others.

The third-party blacklists prove to be very inc Scient » means of hit rate,
as only a small portion of listed addresses are observea ~ v detectors in Warden.
This is given by different sources of data used .. build t 1ese blacklists, so they
also list many attackers that do not target aw, of ti. .etworks contributing to
Warden. Nevertheless, if large size of a blacklist 15 ~ot an issue, these lists can
be used to complement the FMP-based o, Indeed, a combined list of FMP-
based list thresholded at 0.5 (689 entries) ana “e three third-party blacklists
(397250 entries in total) can block 24.. % o . "acks. However, the hit rate is
only 0.26 %, meaning that vast majority . ¢ entries are unused. Also, too large
blacklists increase the chance of blc “.'ng « legitimate traffic, so the smaller,
more efficient FMP-based blacklists me 7 be preferred in many cases.

6. Conclusion

In this article, we introd- ce the Network Entity Reputation Database System
(NERDS), a system that .. iutende 1 for being part of CIDSs and collaborative
defenses to assist with t! e prew’ ~t'on of future attacks and with prioritizing the
alert data. We defined .he 7 uture Misbehavior Probability (FMP), a score that
evaluates network enti. > by » redicting their future behavior, and proposed a
method to create t! e predic. .r by utilizing the machine learning techniques.

Evaluation of " ae | “edictor on a real dataset, containing two types of alerts
reporting malicions TP acdresses, demonstrates that our proposed method is
effective. Addi ion: 'ly, the FMP score can be used both for ranking IP addresses
(enables alert, , o stization) as well as for predicting a set of addresses, that will
most probaly atuc "k on the next day. Furthermore, we demonstrate that the
FMP sco’ @ coa . be used to generate predictive blacklists. Their efficiency is
measured «. ~ae r anber of listed attackers relative to blacklist size. Our results
show t'.... FMr ussisted blacklists clearly outperform the traditional ones.

A other 1. ssible use case, evaluated in a separate work [29], is using FMP
score « € susp’ ious IP addresses as one of the criteria for separating malicious
ar . .egitunate traffic in a DDoS mitigation algorithm. In this method, traffic
{ om IP & 1dresses with high FMP score have higher chance to get blocked during
a DoS .ttack.

With regard to future work, we are currently introducing NERDS and the
F" (r score into PROTECTIVE, a system for cyber threat intelligence sharing
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and analysis being developed by a consortium of 10 academic and ~om .ercial
partners from Europe. We are also exploring a possibility of c~rmbi.'~g the
FMP score, as an indicator of malicious activities, with information .>out nor-
mal traffic in a network (from NetFlow data) to improve the pre »ision of the
blacklists and lower the chance of blocking a legitimate traff' :. L stly, we plan
to try to use deep learning methods to further improve the prc 'iction. Some
of these methods could allow to predict not only proba’ ility of fucture alerts,
but also some of their parameters, like type of attack, ex) =cted in ensity, or the
target.
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We present a concept of an advanced reputation database system for network
entities

We propose scoring of malicious network entities by probability of future attacks
State-of-the-art machine learning models evaluated for attack probability estimation
Scoring method evaluated on a dataset of millions of real alerts

The scores can be used to create highly effective predictive IP blackli.ts




