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ABSTRACT The destructive effects of cyber-attacks demand more proactive security approaches. One
such promising approach is the idea of Collaborative Intrusion Detection Systems (CIDSs). These systems
combine the knowledge of multiple sensors (e.g., intrusion detection systems, honeypots or firewalls) to
create a holistic picture of a monitored network. Sensors monitor parts of a network and exchange alert data
to learn from each other, improve their detection capabilities and ultimately identify sophisticated attacks.
Nevertheless, if one or a group of sensors is unreliable (due to incompetence or malice), the system might
miss important information needed to detect attacks. In this article, we propose Sphinx, an evidence-based
trust mechanism capable of detecting unreliable sensors within a CIDS. Sphinx detects, both, single sensors
or coalitions of dishonest sensors that lie about the reliability of others to boost or worsen their trust score.
Our evaluation shows that, given an honest majority of sensors, dishonesty is punished in a timely manner.
Moreover, if several coalitions exist, even when more than 50% of all sensors are dishonest, dishonesty is
punished.

INDEX TERMS clustering, collaborative intrusion detection, machine learning, mixture models, sensor
reliability, trust management

. INTRODUCTION laborative Intrusion Detection Systems (CIDSs) have been

Recent cyber-attacks such as the Distributed Denial of Ser- proposeq as a line of defense sqitablle to moclier.n network
vice (DDoS) attacks of the Internet of Things (IoT)-enabled comm'umcatmns. A CIDS can 1dent1fy sophlstlcateq .and
Mirai botnet [1] highlight the need for novel cyber-defense coordinated attacks as follows. Upon discovering suspicious
mechanisms. Over the last years a lot of research has been behavior, sensors can raise and share alarms with each other.

conducted towards the notion of collaborative defense [2], Afterw.ards, by aggreg?ﬁ“g and correlating alert dat.a, the
[3]. The core idea behind this is, as the name implies, to CIDS is ab.le to identify attacks that would otherwise be
utilize the knowledge of multiple monitoring entities (so- invisible to isolated sensors.

called sensors) to create a holistic picture of a monitored A major challenge in the field of CIDSs is dealing with the

network. trustworthiness of sensors. That is, the overall accuracy of a

Sensors (e.g., honeypots, intrusion detection systems, fire- CIDS can severely degrade when sensors are compromised
walls, etc.) identify attacks on a communication’s network so and report false data, or when sensors are unreliable and
as to mitigate disruptions. However, isolated sensors cannot either submit false data or no data at all. To cope with this,
effectively detect coordinated attacks, especially in large- a computational trust mechanism can be utilized inside the
scale networks, unless they collaborate [3]. As a result, Col- CIDS. In this article, we propose a trust mechanism that
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identifies honest and dishonest sensors taking into account
their reliability. Honest sensors are sensors with the common
goal of sharing information as accurately as possible within
the CIDS. Conversely, dishonest sensors may only share in-
formation that would advance their personal goals. Dishonest
sensors may also tamper the information they share or col-
lude with other dishonest sensors in the tampering process. A
group of coordinated dishonest sensors that collude with the
common goal of improving the trust of the sensors in their
own group (to the eyes of everyone else), while worsening
the trust of those outside the group, is known as a coalition.

We propose Sphinx', an evidence-based trust mechanism
that uses the sensing reliability of participating sensors to
detect dishonesty’. Beyond detecting one (single) dishonest
sensor, we also consider the scenario of detecting coalitions.
With Sphinx, we make the following contributions on top of
the state of the art:

« We develop a trust mechanism for CIDSs that takes
into account the reliability of a sensor as part of its
trustworthiness (in addition to an evidence-based trust
score).

« We detect both isolated malicious and incompetent sen-
sors as well as groups of malicious sensors that form
coalitions. In addition, we are agnostic with regard to the
CIDS architecture. Sphinx works analogously in fully
distributed as well as centralized CIDSs".

« Contrary to the state of the art, we relax the assumption
that malicious sensors always behave consistently. We
enable Sphinx to detect dishonest sensors that choose,
with some probability, to act as honest sensors.

The reminder of the article is organized as follows. Related
work is discussed in Section II. This is followed by Sec-
tion III, where our proposal, Sphinx, is detailed. A detailed
evaluation is presented in Section IV and conclusions can be
found in Section V.

Il. RELATED WORK

Trust mechanisms are referred to as evidence-based trust
mechanisms when they rely on evidence derived from past
interactions. More precisely, evidence can be derived from
direct interactions between a trustor and a trustee. Direct
interactions, however, may be rare in certain cases, e.g.,
newcomers in service marketplaces. Thus, evidence-based
mechanisms also consider evidence derived from indirect
interactions. That is, an entity provides another with evidence

'In ancient Greek mythology Sphinx was a creature that guarded the
entrance to the city of Thebes asking travelers a riddle to allow them passage;
hence allowing only trustworthy and/or knowledgeable entities to enter. Our
system is inspired by Sphinx as it requires sensors to reliably and correctly
answer requests.

ZNote that the theoretical basis behind Sphinx is not only applicable within
the context of CIDSs. In fact, we introduced the basis of the trust mechanism,
that Sphinx is using, and demonstrated how it can be applied to the field of
social secret sharing in the short paper [4]. The article at hand provides an
extended version of the aforesaid work, along with an adaption to the CIDS
context, less unrealistic assumptions, the support for smart attackers and last
but not least a full fledged evaluation.

3For an introduction to the different CIDS network architectures see [3].

about its past interactions with a third entity. This is usually
referred to as exchange of recommendations. In the case
that both direct and indirect interactions are not available,
one may rely on evidence derived from virtual cues, e.g.,
certifications or stereotypes. In this article, we are interested
in computational trust models that consider the past evidence
(via direct or indirect interactions) of a trustees’ behavior
to estimate the future trustworthiness of that trustee. In this
Section, we examine diverse evidence-based trust mecha-
nisms based on statistical and machine learning techniques.
Furthermore, we highlight key trust mechanisms applied
within CIDSs.

A. BAYESIAN TRUST MODELS

Bayesian trust models [5]-[9] leverage Bayesian probabili-
ties [10] to estimate the future behavior (i.e., the trust score)
of a trustee. The Beta probability density function is used in
this models to estimate the future behavior based on evidence
collected from past interactions. For instance, the reputation
system proposed in [5] calculates trust scores following the
Beta distribution. The system, however, is not able to filter
out dishonest evidence, making the system ineffective when
evidence is not honest. A more robust reputation system is
introduced in [6]. This reputation system uses the honesty
of the participants to build trust relationships. The main idea
is to learn from the observation of others before learning
from direct interaction. In other words, reputation ratings are
incorporated into the view of others.

An extension of the Bayesian probabilistic model is the
event-based trust mechanism proposed in [7], which handles
so called event-structure frameworks [11]. This work pro-
vides a formal framework based on information divergence
to measure the quality of probabilistic trust mechanisms. Fur-
thermore, the trust-aware model introduced in [8], addressing
service-oriented environments, formalizes a Bayesian service
selection model focusing on monitoring and exploring ser-
vice composition. The work shows how one can reward or
punish services dynamically even with incomplete knowl-
edge of the composition.

B. MACHINE LEARNING FOR TRUST MODELS

Nowadays, an increasing amount of evidence (or data) is gen-
erated by large-scale web applications, e.g., social media, e-
commerce or recommender systems. Machine learning tech-
niques are used by researchers to model complex scenarios
by answering two fundamental questions in trust research.
The first question being: in the absence of past behavior,
how can trustworthiness be estimated? And second, how can
the dynamic behavior of a target be estimated from different
interactions?

To address the first question, stereotyping models,
e.g., [12], use the trustor’s past experience with other similar
entities. These models harness trust-relevant features using
machine learning techniques [13] (e.g., Linear Discriminant
Analysis (LDA), Decision Tree (DT) or M5 model trees) to
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extract connections between potential interactions and past
interactions.

To address the second question, Tang et al. [14] address the
issue of dynamic behavior. The authors analyze the evolution
of trust by investigating the online dynamics of users in
review sites like Epinions®. It turns out that trust is strongly
correlated to the similarity of the preference of the users.
To capture their preference evolution, or dynamic trust, the
authors use machine learning approaches such as latent factor
models [15]. Moreover, in evidence-based trust mechanisms,
evidence is often provided by different sources. Honesty of
the source of information is key for reliable trust estimation
and, thus, it is essential to determine whether the infor-
mation source is unbiased or not. Existing evidence-based
trust models use unsupervised approaches, like statistical
deviation [16], to identify responses that are very different
from others. The assumption here is that biased responses are
a small subset of all responses. Furthermore, in large-scale
open systems like social networks, the behavior of an entity
with respect to others may vary so as to maximize profits.
Approaches based on Hidden Markov Models [17] have
also proven effective in detecting and correcting dynamic
behavior.

Our article addresses the second question (of how can
the dynamic behavior of a target be estimated from different
interactions) by using machine learning techniques to design
our system. We use unsupervised clustering algorithms to
identify evidence created by dishonest participants. In con-
trast to related work, with the techniques of fitting mixture
of Gaussians to clusters, we identify unreliable evidence
submitted by colluding participants. This confers Sphinx the
capability to downgrade the trustworthiness of groups of
participants that have chosen to collude.

C. TRUST MANAGEMENT WITHIN CIDSs
In the early days of CIDS research, it was mostly assumed
that every collaborating sensor was honest; all having the
common goal of detecting coordinated attacks [3]. More
implicitly, but equally important, it was also assumed that the
sensing capabilities of collaborating sensors were reliable.
That is, collaborating sensors could be trusted to reliably
monitor (i.e., sense) the network point to which they were
assigned. In recent years, the assumption that there were
no insider threats has been taken more seriously, e.g., [18],
[19]. The assumption that the sensing capabilities of sensors
might not be reliable, however, has not been extensively
addressed in related work. With Sphinx, we aim at proposing
an approach to address this issue when sensing reliability
cannot be directly obtained. Instead, we assume that this
information can only be indirectly obtained by asking other
sensors; which enables sensors to collude and provide dis-
honest reports.

Fung et al. have worked on many aspects of identify-
ing insider threats within CIDSs. In [20], they propose a

“http://epinions.com/
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general framework to bestow CIDS sensors the ability to
assess the trustworthiness of others from past interactions.
Afterwards, in [21], they propose a trust mechanism based
on the Dirichlet distribution that enables sensors to update
their trustworthiness from outcomes of mutual interaction.
This last work considers the existence of both malicious and
incompetent sensors. Finally, in [18], they add the concept
of acquaintances that, along with the previous Dirichlet-
based model, can break or establish dynamic relationships
to improve the performance of a CIDS. It is worth noting that
in many of the contributions of Fung et al., through the usage
of a message passing system, collusion cannot occur. In our
work, instead, we cannot discard the possibility of collusion
due to the fact that their message passing system cannot
function in our scenario. This is because we assume that it
is not possible to directly query all CIDS sensors. Instead,
we need to rely on the opinions of others. This is a common
case when multiple CIDS sensors belong to different groups,
when the CIDS employs a fully distributed P2P architecture,
or both.

Collusion resistant trust models have been proposed in
different fields. Dwarakanath et al. proposed a collusion
resistant mechanism that detects dishonest IoT devices com-
municating false trust scores [22]. Collusion is detected by
comparing trust vectors reported by multiple devices using
a cosine similarity metric. Although this collusion detection
mechanism does not target CIDSs, it could be adapted to such
systems.

lll. SPHINX: A COLLUDER-RESISTANT TRUST
MECHANISM

In this section, our colluder-resistant trust mechanism,
namely Sphinx, is presented. First, the general framework
and main assumptions are shown (Section III-A). Then,
Section III-B, Section III-C, and Section III-D describe how
Sphinx operates. In Table 1 we provide a reference summary
of the most important notations used throughout this paper.

A. FRAMEWORK AND ASSUMPTIONS
Let us assume a CIDS having a set S = {S1,...,S,} of
n collaborating sensors. Trust scores Tl(t), LoD e [0,1]
are assigned, respectively, to sensors Si,...,S, at time ¢.
These trust scores convey information about how reliable the
sensing capabilities of the sensors are. Sensors periodically
interact with each other exchanging local knowledge’. After
each interaction at time ¢, sensors evaluate the reliability of
each other and update trust scores Tl(t), e ,T,(Lt). To simplify
notation, trust scores Tl(t), e 77_7(;5) at time ¢ are simply de-
noted as 71, ..., Ty.

Trust scores 71, . . ., T,, indirectly measure a sensor’s sens-
ing reliability. In an environment where sensing reliability
is rewarded, sensors might be interested in maximizing their

trust scores. To maximize its trust score, a sensor can go

SThis work assumes that if sensor S; shares its local knowledge, all
sensors S; € S with j # 4 receive the knowledge unaltered.
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S;  sensor indexed by %
n  total number of sensors
T;  trust score of S; at time ¢
7/ / 7}’ evidence- / reliability- based trust score of .S; at time ¢
Ti(tfl) reputation of S; at time ¢ — 1
Pj(i) Cartesian point related to how S; rates S;
wp]f“ / yPJ(i) x— / y-coordinate of PJ@
U;i) evidence submitted by S; with respect to S;
K total number of cluster centers
C1,...,Cx  clusters or classes of credibility
My,...,Mg  center points of clusters C1,...,Cx
YMy>-- - YMy  y-coordinate of My, ..., Mk
w](.i) weight of data point P]m
m1,..., Tk  mixing coefficients of M1y, ..., Mg
ogj ) trustworthiness gain or loss by S; with respect to S;
a1 reward and penalty values used to calculate oEj )
ag  number of possible values ol(-j) can have
F(7;)  weight balance between high and low trust scores 7;
1 mixing coefficient of 7/ and 7/’ to create 7;

TABLE 1: Summary of the notations used in this article.

through the hardships of ensuring high sensing availability
and accuracy so that others give the sensor good ratings.
However, sensors might also consider lying about the reli-
ability of others so as to make the others look worse. Fur-
thermore, those dishonest sensors might secretly choose to
form coalitions to boost the trust scores of their members and
decrease the trust scores of others outside the coalition. We
consider that each sensor S, ...,.S, may be either honest
or dishonest, where dishonest sensors might belong or not to
a coalition. We make the following three assumptions with
respect to the behavior of honest and dishonest sensors.

o Assumption I: Honest sensors report evidence as accu-
rate as they can but make small mistakes that follow a
Gaussian distribution®.

o Assumption 2: Dishonest sensors submit tampered evi-
dence following a Beta distribution® and can choose to
submit accurate evidence to confuse the system follow-
ing a Uniform distribution®.

o Assumption 3: When dishonest sensors collude, they
only belong to one coalition.

Sphinx aims at mitigating the effect of a coalition under the
last three assumptions. To achieve this, Sphinx calculates the
trust score 7; using two measurements termed the evidence-
based and reliability-based trust scores. The evidence-based
trust score 7; for sensor S; results from the evidence sub-
mitted by sensors S;, for j = 1,...,n and j # i (see
Section III-B). The calculation of the evidence-based trust
score is somewhat similar (see Section II) to what is done by
Bayesian models, except that the evidence processed for the
computation of the evidence-based trust score has different

SFor a discussion of why this distribution is used see Section IV-A.

relevance depending on the reputation of the source. The
reliability-based trust score 7;" depends on how reliable the
evidence submitted by sensor .S; is with respect to sensor
S, with j # i (see Section III-C). In the calculation of this
reliability-based trust score, unreliable evidence is detected
and the submitter is discouraged to do so by decreasing its
trustworthiness. In Section III-D, we describe how to merge
these two values to obtain the final trust score 7;.

B. EVIDENCE-BASED TRUST SCORE

This section describes how the evidence-based trust score 7/
for sensor S; is computed, taking into account the evidence
submitted by all the other sensors. The computation of the
evidence-based trust score 7/ is performed in an Euclidean
space of dimension D = 2. For readability, we divide this
computation into the following steps.

a: Collecting the Evidence ‘
Each sensor S; submits point Pj(z) = (x P]m,yP;q:)) with

respect to sensor S;. The first coordinate of point Pj(i) is

Tpa = T;t_l) € [0,1], where Tj(t_l)

is the reputation
of ‘the sensor S; conducting the evaluation. In fact, being
T;t_l) the trust score computed at time ¢ — 1, it can be seen
as the reputation gained by sensor S; up to that moment.

The second coordinate of point Pj(i) isy pi) = a]@, where
, i
UJ@ € [0,1] is the evidence by which sensor S; evaluates

sensor S;. In other words, a](-i) is the expectation that sensor

S; has with respect to the future behavior of .S;.

b: Representation of 7/

Since the evidence relative to the trustworthiness of sensor S;
is represented as a value between 0 and 1, the evidence-based
trust score 7/ is also a value between 0 and 1. The idea is to
define the data set P = (P ... P PY . P
of points submitted by sensor S;,forj =1,...,nand j # ¢.
Afterwards, K-means clustering and Gaussian mixtures are
used to extract the evidence-based trust score Tl-(l) from the
coordinate y ;) of each point in the data set 2408

J

c: Classes of Credibility

K-classes of evidence are distinguished with respect to
their credibility using the K -means clustering algorithm.
The points in the data set P(*) are grouped into K clusters
Ci,...,Cx. Each point in the data set P is a tuple corre-
sponding to the values “reputation of the rater” and the values
“the submitted rate/evidence”. Therefore, the clustering algo-
rithm finds classes which take into account both values. The
center points M, ..., M of clusters Cy,...,Cx simplify
these classes of credibility with fewer, yet more informative

points. An analogous view is that coordinates yas, , . . ., Yarg
of center points M1, ..., M represent how trustworthy sen-
sor S; is believed to be by the sensors in clusters Cy, ... ,Cxk.

The classes of credibility may be shaped in any form of dis-
joint sub-intervals. We may consider, for example, dividing
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the interval [0, 1], representing the reputation Tj(t_l) of sen-

sor S;, into K disjoint sub-intervals [0, %),..., [l — &, 1].
This way, since clustering algorithms group together points
around the same area, clusters Cy,...,Ck represent sensors
with a similar reputation rate with sensor .S;.

d: Assigning Weight w'" to Point P"

Each point Pj(i) is submitted by sensor S;, which has a

reputation T}t_l). We wish to use this reputation to weight

) (@

point Pj(i . We define weight w; ™ as:

(t=1)
of) = =l
2]‘;1 F (Tj )

where F' : [0,1] — R is a positive and increasing function
over the interval EO, 1], which assigns higher scores for larger
trust score T;t_l . The purpose of this function is to define
how to balance the influence of low-weighted reputation
against high-weighted reputation. In other words, function
F(x) determines how many low-weighted reputations are
needed to have enough influence to overcome high-weighted
reputation. This is desirable as sensors with a high reputation
might also submit incorrect evidence. If many sensors, even
with a low reputation, submit different evidence in compar-
ison to the highly reputable CIDS, their opinion also has an
impact. A possible approach to define function F'(z) is to
choose a known increasing function (such as the logarith-
mic function) and adjust the eccentricity according to the
number of low-weighted reputations necessary to balance
higher-weighted reputations. Note that F'(x) does not need
to be continuous. In fact, another possible approach to define
function F(x) is to create a step function over disjoint sub-
intervals of the interval [0, 1]. Thus, two trust scores within
the same sub-interval are considered equivalent with respect
to the reputation of the sensor they represent.

e: Computation of 7/

The evidence-based trust score 7/ is computed as a
weighted combination of coordinates yus,, ..., yn, of the
center points My, ..., Mg, respectively. Center points
M, ..., Mg are not equivalent: together with the classes of
credibility they distinguish, they depend on the cardinality
of their respective clusters. The idea is to associate values
m1,...,TK to center points My, ..., Mg in quantitative and
qualitative manner. Values 71, ..., 7 are regarded as the
mixing coefficients of a mixture p(P(*) of K Gaussian
distributions Ny (p11, 03), . . ., Nk (1, % ). More precisely,
the points within each cluster C; can be seen as following
a Gaussian distribution with p; = M;, forl = 1,..., K.
That is because the mean and the variance of a Gaussian
distribution convey information about where the points are
mostly concentrated and how they are spread, which is
comparable to the information conveyed by the clusters.

Weights wy) are used to compute the mixing coefficients

T1,...,TK. In more detail, m; = Z;-”,l wl@, where n; is
- J
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the cardinality of cluster C; and wl(j) is the weight assigned to

point Pl(j) € C, forl = 1,..., K. Note that Zfil m =1
and thus the mixture p(P(")) is a probability distribution. The
weighted sum of means u1,..., ux represents the mean p
of the closets Gaussian distribution N (11, 02) approximating
mixture p(P*)). And this is what is aimed at: since the means
W1, ..., ug are the center points My, ..., My, we can now
compute the evidence-based trust score 7/ as the weighted
sum of coordinates Yz, , ..., Yn, according to the mixing
coefficients 7y, ..., k. That is,

K
Ti/ = Z’R’l “Ym, € [0, 1]
=1

In other words, the evidence-based trust score is computed
as coordinate y, of the mean p of the fitting Gaussian
distribution A\ (u,02). One can argue that the evidence-
based trust score 7/ could be computed directly after clusters
C1,...,Ck were distinguished, without passing through the
step of computing the mixture of Gaussians. This is, in fact,
what one would practically do when computing 7;. However,
we highlight that this computation is possible because the
center points of the clusters model are the means of Gaussian
distributions.

C. RELIABILITY-BASED TRUST SCORE

This section describes how the reliability-based trust score 7;’
for sensor S; is computed taking into account the reliability
of the evidence submitted by sensor .S; itself with respect
to all the other sensors. We recall that the reliability-based
trust score is meant to distinguish submitted reliable evidence
from unreliable evidence and to, respectively, encourage and
discourage such submissions. Just as with the evidence-based
trust score 7/, the computation of the reliability-based trust
score 7/’ is performed in an Euclidean space of two dimen-
sions D = 2. For readability, we divide this computation into
four steps.

a: Evidence Collection

The process begins by collecting all evaluations, known as
evidence, issued by each sensor. This evidence is deﬁned
as 05] ) ¢ [0,1]; that is, the coordinate Yp(» of point Pi(J )
submitted by the evaluator sensor S; with respect to sensor
S;, for j = 1,...,n and j # 4, where point Pi(j) =
(a:Pim , yPi(j)) is defined in Section I11-B.

b: Representation of

Since the evidence relative to the reliability of the submis-
sions of sensor .S; is represented as a value between 0 and
1, the reliability-based trust score 7/’ is also a value between
0 and 1. The reliability of evidence o) is measured with

the distance d(TJ/-, afj )), where ij is thelevidence—based trust
score of sensor S;. Distance d(TJ/-,O'Z(j)) is at most 1. If
distance d(77, ofj)) is close to 1, this is an indicator of the
dishonesty of sensor S; when rating sensor S;; that is, it is

5
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(@

an indicator that ;" is an unreliable piece of evidence. On

the contrary, if distance d(7;, UZQ )) is close to 0, this is an
indicator of the honesty of sensor .S; when rating sensor S;

() is a reliable piece

i

in other words, it is an indicator that o
of evidence.

c¢: Reliability Score

Ranges of reliability are designed to grant trustworthiness to
sensor S; when distance d(77, al(j )) is small and vice versa.
We aim at designing a mechanism that increases 7;” when .S;
is honest and decreasing Ti/ ’_in variable amounts, when S; is
dishonest. We achieve this by assigning a reliability score ogj )
to each value d(Tj/-,O'Z(j)) of S; forj =1,...,nand j # 4.
gj ) submitted by S; is rated as ol depending
on how close it is to T]/- . The reliability score oz(-j
the set

The evidence o
is a value in

O={z:z=a1+(—a1 xn),ne{0,1,2,...,(az — 1)}},

where a7 € {0, 1} specifies, both, a maximum reward and
a series of penalty values; and oy € Z* specifies the total
number of elements, or steps, in O. Intuitively, the first value
of O is aq, the second value is 0 and subsequent values are
multiples of —«, with a total of ai; elements. The element

o € O is assigned to the distance d(T]’-,UQ)) at index

3

ld(7}, agj )) - ap|. With such an interpretation, if distance
d(7}, al(j )) is between the range [O, a%}, the first element of

O, namely «;, is assigned as 02(_1).

Because all submitted evidence is rated according to its
reliability, sensors are encouraged to submit reliable evidence
and discouraged to submit unreliable one. If a sensor submits
unreliable evidence time after time, then it will progressively
lose more and more trust. This is a countermeasure that
discourages the submission of unreliable evidence, as the
trustworthiness of the submitter decreases.

d: Computation of 7}’

The reliability-based trust score 7] is computed from the
reputation Ti(t_l) of sensor S; at time ¢ — 1, taking into
account the average reliability score of the n — 1 scores afj )
it submitted, for j = 1, ..., n with j # . That is,

- 1 - ;

Ti// = Ti(t b + m ‘ Z ‘01(-J).
J=1j#i
In this way, the reliability-based trust score 7/" is computed
by increasing Ti(til) if the scores az(j ) are on average reliable
or by decreasing Ti(til) if the scores O'EJ ) are unreliable
on average. Note that the computation of the reliability-
based trust score 7/’ is recursive. That is, the history of the
behavior of sensor .S; in the previous rounds is taken into
account by the term Ti(tfl). In fact, reputation is built upon
consistent increments over a long period of time and is not
greatly affected, both positively nor negatively, in one single
recursion.

6

D. FINAL TRUST SCORE
Trust score 7; is computed as a convex combination of 7/
(Section I11-B) and 7" (Section III-C). That is, the parameter
n € [0, 1] is selected such that n+ (1 —n) = 1 and trust score
T; iS:

i=n-1+1-n)-7. (1)

The parameter 1 holds for the computation of each trust score
T, for ¢ = 1,...,n. It is chosen based on the requirements
of the specific CIDS. In some situations, it might be more
desirable to assign more weight to a sensor performing well
rather than a sensor rating honestly and vice versa.

IV. EVALUATION

Sphinx is capable of identifying coalitions if less than 50% of
all sensors collude in a single coalition. In certain conditions,
when multiple and independent coalitions exist, Sphinx can
identify dishonest participants even when more than 50%
of all sensors are dishonest. This section gives evidence
to support these claims in the form of different evaluation
experiments.

A. EXPERIMENTAL SETUP

Experiments are performed in rounds. Rounds represent the
basic time unit used in all experiments. At each round ¢,
the evidence-based (Section I1I-B) and reliability-based (Sec-
tion I11-C) trust scores, /() and 7/(*), respectively, are cal-
culated for each sensors participating in a CIDS. These two
trust scores are combined together, according to Equation (1),
to obtain the trust score 7(*) of each server at round t. The
evidence and reliability-based trust scores use the previous
trust score 7(t=1) to perform their calculations; therefore,
making the whole process recursive.

All experiments assume that sensors behave in one of two
different ways: either they are honest or dishonest. An honest
sensor always rates others in accordance to its empirical
observations. A dishonest sensor, on the other hand, rates
others better or worse depending on some convenience factor.
If a dishonest sensor is acting alone, without the support of
others, it resorts to rating every other sensor worse than what
it itself empirically observed. In doing so, the supposition
is that his trust score would eventually become the best if
the score of everyone else worsens. These single dishonest
sensors are termed lone colluders.

The experiments take into account all assumptions stated
in Section III-A. The following is a summary of these.
Dishonest sensors are able to collaborate with others to form
coalitions. Within one single CIDS, more than one coalition
might be present. A coalition has the goal of increasing the
trust of all its sensors while trying to reduce the trust of
any outsider. All sensors of a coalition act according to the
following three rules:

1) When rating other sensors in the same coalition, the
rating is improved relative to the observed sensing
reliability of the other sensor.
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2) The sensors of a coalition rate others, not belonging
to the same coalition, with a worsened rating relative
to the other sensor’s observed sensing reliability. With
some probability, dishonest sensors can give honest
ratings to try and fool the system.

3) Dishonest sensors can only belong to one coalition.

All non-deterministic experiments are repeated 50 times.
Instead of showing aggregated graphs of all experiments, we
choose to show one descriptive scenario that represents the
experiments well. Once parameters of Sphinx are fixed, the
algorithm is deterministic except for how dishonest sensors
alter ratings. Dishonest sensors use a Beta distribution to
select a value to add or subtract from a trust score before
submission (depending on whether they are improving or
worsening the score). This stochastic selection of values does
not modify the trend of the experiments, therefore, making
the variance of the results small.

1) Parameters of the Rating System

Dishonest sensors improve or worsen ratings according to a
Beta distribution. Whenever a dishonest sensor S; needs to
submit a rating, or evidence, for .S;, it does so using:

x ~ Beta(a,b) 2)

o\ =1 +u, 3)
where a and b are chosen parameters for a Beta distribution
according to one of the combinations shown in Figure 1.
In Equation (2), a sample z of the chosen Beta distribution
is obtained. This sample is either added or subtracted, in
Equation (3), depending on whether the trust score 7; is
improved or worsened. We choose the Beta distribution as it
models dishonest members that alter evidence conservatively
most of the time and aggressively a few times with low
probability.

— = 2 b = 5()

a=2,b=40
= smmemmem g =2 b =230
marmmanmm g =2 b=20
sssmmnmnnn 3=3b=20
b =20

0.0 0.1 0.2 0.3 0.4

FIGURE 1: Family of Beta distributions that specifies how much
ratings are improved or worsen by dishonest participants in a CIDS.

In contrast to a dishonest sensor, honest sensor S; submits
ratings, or evidence, of another sensor S; using a Gaussian

VOLUME 4, 2016

model; that is,
y ~ N(0, std) “
o =71 +y. (5)

A sample y from a Gaussian distribution with standard devi-
ation std is obtained. This sample is then added to the true
trust score 7; to account for the potential inaccuracies in the
empirical observations S; might have had. In all experiments,
std is chosen such that std < E[Beta(a,b)]. If this is not
the case, the samples of the Gaussian distribution used by
honest sensors overlaps greatly with the samples of the Beta
distribution used by dishonest sensors, making honest and
dishonest behaviors almost indistinguishable.

2) Parameters of Sphinx

The calculation of trust scores depend on some user-supplied
parameters. The evidence-based trust score 7' depends on
two parameters: a score weight function F'(x) and the num-
ber of cluster centers K (see Section II1-BOc). The reliability-
based trust score 7" relies on two parameters: a reward
parameter «; and the number of penalty subdivisions as
(see Section III-COc). The combination of both evidence and
reliability-based trust scores into the final trust 7 depends
on the mixing coefficient 1 (see Section III-D). In most
experiments, all these parameters are fixed to a single set to
demonstrate how generalizable a single set of parameters can
be.

B. EXPERIMENTS

We conduct a series of experiments that demonstrate how the
trust scores of lone colluders and coalitions are penalized.
Unless explicitly indicated, all experiments use the following
parameters:

if 0.00 <7 <0.25
if 0.25 < 7 < 0.50
if 0.50 < 7 <0.75°
if 0.75 < 7 < 1.00

K = 2, a0 = 020, ae = 25 and n = 0.30. For the
generation of ratings by honest and dishonest sensors, we
choose the parameters a = 3, b = 20 for the Beta distribution
in Equation (2) and the parameter std = 0.05 for the
Gaussian distribution in Equation (4). The chosen parameters
of the Beta distribution model a distribution with an expected
value of E[Beta(3,20)] = 0.13. This implies that, most of
the time dishonest sensors increase (or decrease) the rating of
others by 0.13 points. With this particular Beta distribution,
the increase (or decrease) can range from small values close
to 0.0 up to the high value 0.35 (with low probability). This
models dishonest sensors that choose to be conservative most
times but sporadically aggressive.

F(z) =

=W N =

1) Experiment 1: Detecting Single Large Coalitions
Sphinx can detect single large coalitions as long as the
number of sensors of that coalition do not exceed the number

7
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Coalition 1

= = == Honest Group

rounds

(a) 40 sensors in total, 25% of all sensors are dishonest. The colluding
sensors are easily identified; their trust rapidly drops to zero.

Coalition 1

0 2 4 6 8 10 12 14 16
rounds
(c¢) 40 sensors in total, 47.5% of all sensors are dishonest. Same effect

as when considering 37.5% of dishonest sensors. With more dishonest
sensors, the effect last longer until about round six.

Coalition 1

= = == Honest Group

0 2 4 6 8 10 12 14 16

(b) 40 sensors in total, 37.5% of all sensors are dishonest. In the first
two rounds, the coalition can negatively affect the honest sensors. After
the trust of the coalition drops to zero, the honest sensors only increase
their trust.

Coalition 1 = = == Honest Group

rounds

(d) 40 sensors in total, 50% of all sensors are dishonest. The dishonest
sensors overwhelm the honest sensors and they easily drop the rating of
the honest sensors to low values.

FIGURE 2: Change of trust with every new calculation (round) of Sphinx. Four different scenarios are evaluated: when 25%, 37.5%, 47.7%

and 50.0% of the collaborating sensors form a dishonest coalition.

of honest sensors. This is illustrated in Figure 2. The x-axis of
each plot shows the number of rounds or, in other words, the
number of times our recursive trust mechanism is calculated.
Round zero is the case where Sphinx has not yet been run;
therefore, it represents the initial bootstrapped trust of each
sensors. All sensors are bootstrapped with an initial trust
score following the Gaussian distribution A(0.50,0.15). On
the y-axis, the trust scores 7 are shown.

In each of the four plots of Figure 2, setups of different
dishonest and honest participants are tested. Figure 2a shows
that it is easy to detect coalitions with 25.0% of dishonest
sensors. Figures 2b and 2c show that, although there is some
negative influence from the coalition for a few rounds, the
trust of the coalition falls to zero. This is taking into account
the fact that in Figure 2c 47.5% of all sensors (19 out of 40)
are dishonest. If 50.0% of all sensors are part of a coalition,
however, the trust model fails to punish dishonesty as the
results in Figure 2d show.

2) Experiment 2: Detecting Multiple Coalitions

Sphinx is capable of recognizing and punishing independent
coalitions. With multiple coalitions, even if more than 50.0%
of the total sensors are dishonest, honesty is successfully
rewarded while dishonesty is punished. In Figure 3, we can
appreciate how our methodology performs when dishonest
participants are moderately dishonest using a Beta distribu-

8

tion with parameters ¢ = 3 and b = 20. From a total
of 50 sensors, a varying amount of dishonest sensors in
different coalitions are shown. In Figure 3a, five coalitions
are tested, each having 5 sensors, amounting to 50% of all
sensors. Similarly in Figure 3b, six coalitions with 5 sensors
each, representing 60% of all sensors, are tested. Honesty is
successfully rewarded while dishonesty is punished in both
scenarios.

When dishonest sensors use the Beta distribution with
parameters a = 3 and b = 20, adding more coalitions (of
5 sensors) would result in an ecosystem where no individual
or coalition can increase its trust score beyond 0.25. The
dishonest ratings effectively deny the possibility of gaining
trust. If the dishonest sensors are less conservative and mod-
ify their ratings using a more aggressive Beta distribution
with parameters ¢ = 2 and b = 10, honesty is still
recognized and rewarded as shown in Figure 4. During the
early rounds of our methodology, the trust score of everyone
is heavily decremented. After the trust scores have settled
to low values, honesty can be recognized again. In round
12, dishonest sensors no longer have enough trust and their
evidence submissions stop having much weight. It is in this
scenario that honesty can slowly build up trust once again.
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(a) 50 sensors and 5 coalitions of 5 sensors each. 50% of all sensors are
dishonest. Although 50.0% of all sensors are dishonest, the fact that no
coalition has more than the total number of honest sensors, dishonesty
can still be successfully punished. The trust score of all sensors in all
coalitions rapidly drops to zero. The trust score of the honest sensors
rapidly increases.

Coalition 5
== mim Coalition 6
@t Honest Group

Coalition 1
= === Coalition 2
== u == Coalition 3

== s nm  (Coalition 4

0 2 4 6 8 10 12 14 16

(b) 50 sensors and 6 coalitions of 5 sensors each. 60% of all sensors are
dishonest. Dishonesty is correctly identified and punished. However,
honest sensors are also punished in the beginning and then start to
be rewarded. Notice that double the rounds were needed to detect
dishonesty as when 50% of the sensors were dishonest.

FIGURE 3: Change of trust with every new calculation (round) of Sphinx. Four different scenarios are evaluated: when 25%, 37.5%, 47.7%

and 50.0% of the collaborating sensors form a dishonest coalition.

Coalition 1 ssmus  Coalition 5

= === Coalition 2 = mim Coalition 6

== == Coalition 3 G Coalition 7

== unm Coalition 4 &= = = ® Honest Group
1.00 |
0.75F

&~ 0.50

0.25F
0'000 4 8 12 16 20 24 28 32

rounds

FIGURE 4: 50 sensors and 7 coalitions of 5 sensors each. 70% of
all sensors are dishonest. If the dishonest sensors are less conserva-
tive, honest sensors are eventually recognized.

3) Experiment 3: The Effects of Disperesed Intitial Trust
Scores

The previous experiment assumed that all sensors started
with a trust score close to 0.5. Initializing the trust scores over
the range [0, 1] has no negative influence on the capabilities
of Sphinx to detect dishonesty. Taking into account 20 honest
sensors and two coalitions of 10 sensors each (for a total of
20 dishonest sensors), Figure 5 shows how honest sensors
with a low starting trust score are able to reach high trust
scores. Similarly, dishonest sensors starting with high trust
scores get their score reduced to zero given enough rounds.
Shown in the figure, the honest sensor with the lowest starting
trust score (of 0.08) is able to reach a maximum score in
eleven rounds. The dishonest sensor with the highest initial
trust score (of 0.95) is reduced to a score of zero after ten
rounds.
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FIGURE 5: Evolution of the trust scores (7) of two coalitions, each
with 10 sensors, and 20 honest sensors when the trust scores are
initially dispersed. The honest sensor with the lowest score (of 0.08)
reaches a trust of 1.00 after 11 rounds.

4) Experiment 4: Sensibility of Dishonesty

Starting with the trust score of each server initialized with the
Gaussian distribution A (0.5, 0.2), we examine how chang-
ing the sensibility of dishonesty affects the capability of
identifying coalitions. In our experiments, we observed that
honesty can be identified when std < E[Beta(a,b)] (see
Section IV-Al). In our setup, we assume that std = 0.05,
i.e., honest sensors approximate the real score 7; of sensor S;
with 7; such that 7; = A/ (7;,0.05). From the illustrated Beta
distributions in Figure 1, it is possible to detect dishonest
sensors that act according to a Beta distribution parameter-
ized with @ = 2 and b = 30 (where E[5(2,30)] = 0.062)
and below. Conversely, if dishonesty is modeled with the
Beta distribution 3(2,40) or §(2,50), dishonesty cannot be
identified as it is easy to confuse with (honest) mistakes.
Figure 6 shows the average trust scores 7 with standard
deviations after executing 12 rounds of our trust mechanism.
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FIGURE 6: Average trust score 7 of honest and dishonest sensors
when the sensibility of dishonesty is varied after 12 rounds of
executing our trust mechanism. From left to right, more subtle Beta
distributions are used by dishonest sensors to improve or worsen
the trust score of others. When using (3(2,30) or 5(2,20), the
trust scores of both coalitions are kept in line. Using more subtle
Beta distributions results in the trust scores of the coalitions also
increasing (without affecting the honest participants).

When the coalitions are dishonest according to the Beta
distribution (2, 20) and 8(2, 30), the average trust score of
the dishonest participants is kept low. In all repeated exper-
iments, the average trust score of all coalitions would tend
towards 0.0. This is, however, not the case when coalitions
act according to the Beta distributions 5(2,40) or 5(2, 50).
In both cases, the average trust scores cannot be kept low
and have a tendency to increase towards 1.0. This is due to
the fact that with such Beta distributions, it is not possible
to distinguish dishonesty from honest mistakes. Note that the
trust scores of the honest sensors are not negatively affected
this way.

5) Experiment 5: Dealing with Smarter Dishonest Sensors
In this scenario, we describe the effects on honest and dishon-
est sensors when those being dishonest choose to honestly
submit evidence according to some probability p. In Figure 7,
we illustrate four scenarios that take into account 40 sensors,
different ratios of dishonest sensors, and different values of p.
Figures 7a and 7b duplicate the conditions of the experiments
illustrated in Figure 2a but incorporate p. In Figure 7a, each
sensor of the coalition chooses to be honest with a probability
of 20% (p = 0.2). In contrast to the results obtained when
p = 0 (cf. Figure 2a), the coalition’s trust scores stay slightly
higher in round two but almost collapse by round three. With
p = 0.5, as illustrated in Figure 7b, the coalition’s trust
scores are more slowly punished. In the last two scenarios,
the honest sensors’ trust scores are barely affected.

Figures 7c and 7d duplicate the conditions of the exper-
iments shown in Figure 2c but use different values of p.
As shown in Figure 7c, with p = 0.2, the coalition is not
successful in keeping their trust scores relevant. By round
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eight, all trust scores collapse. Surprisingly, the honest sen-
sors’ trust scores are positively rewarded by the choices of the
coalition. The honest sensors’ trust scores do not decrease as
they did in Figure 2c¢ and are maximized by round 11. In the
last experiment, shown in Figure 7d, sensors in the coalition
choose to be honest 50% of the time. In this scenario, the
coalition’s trust scores stay relevant longer but, with enough
rounds, eventually collapse. However, the honest sensors’
trust scores are positively affected and reach their maximum
by round eight.

Overall, dishonest sensors that choose to act honestly
with some probability p must trade between staying relevant
longer and rewarding honest members to increase their score
even faster. In the previously described scenario, we found
a turning point when p = 0.65, for which the results are
shown in Figure 8. At this turning point, sensors in coalition 1
choose to be honest 65% of the time and manage to keep their
trust scores almost constant for all 32 rounds. If the coalition
wishes to get the trust scores 7 of their sensors to rapidly
increase (and not be left behind by the honest sensors), they
would need to be honest 80% of the time. This would enable
them to give some dishonest ratings without being heavily
punished but would go against the goal of reducing the honest
sensors’ trust scores.

V. CONCLUSION AND FUTURE WORK

In this article, Sphinx a colluder-resistant trust mechanism for
CIDSs that is capable of identifying and punishing coalitions
of dishonest CIDS sensors is presented. Sphinx uses unsu-
pervised machine learning techniques to collect and process
the evidence submitted by sensors. Through these methods,
it is possible to establish a trust score for each CIDS sensor
based on its trustworthiness as well as the reputation of its
submitted evidence. Using this novel approach, it is possible
to detect unreliable evidence and effectively penalize dis-
honest sensors by reducing their trust even if they are part
of a coalition. In the evaluation section, it was shown how
Sphinx detects single large coalitions as long as the majority
of the CIDS sensors are honest. When there are multiple
independent coalitions, even when the large majority is dis-
honest, Sphinx is still able to identify and punish dishonesty.
The only necessary condition is that the largest independent
coalition must be smaller than the number of honest sensors.
For instance, in a scenario with two coalitions of 10 sensors
each (a total of 20 dishonest sensors) and 15 honest sensors,
dishonesty can still be detected.

As future work, Sphinx can be extended to compute the
trust scores according to additional criteria, such as the
amount of past interactions. Also, in this case, clustering
algorithms can be used to process all this information and de-
fine proper credibility classes of evidence. Furthermore, we
plan to design a new bootstrapping procedure that improves
upon [12] so as to better address the scenario of trust within
CIDSs.
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(a) 40 sensors, 25% dishonest, 20% probability of dishonest sensors
being honest. When colluders are 20% of the times honest, honest
sensors increase their trust scores faster. Dishonest sensors are still
identified.
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(c) 40 sensors, 47.5% dishonest, 20% probability of dishonest sensors
being honest. When sensors in coalition 1 rate honestly with a 20%
probability, instead of harming the honest sensots, the coalition boosts
the trust scores of the honest members without gaining enough trust.

s Coalition 1 = = = = Honest Group |
1.00

0.75 &
t~ 0.50
0.25
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(b) 40 sensors, 25% dishonest, 50% probability of dishonest being
sensors honest. Colluders are correctly identified, albeit in later rounds.

Coalition 1 = = == Honest Group |

0 2 4 6 8 10 12 14 16
rounds

(d) 40 sensors, 47.5% dishonest, 50% probability of dishonest sensors
being honest. With a 50% probability of rating honestly, coalition 1
further boosts the scores of the honest sensors. Their trust scores,
however, are more slowly reduced.

FIGURE 7: Sphinx’s performance when dishonest sensors are smarter, i.e., they act honestly with some probability. The top and bottom rows
replicate the conditions used in the experiments shown in Figures 2a and 2c, respectively, but consider smarter dishonest sensors.

s Coalition 1 = = == Honest Group

FIGURE 8: 40 sensors, 47.5% dishonest, 65% probability of
dishonest sensors being honest. The coalition’s trust scores almost
stay constant throughout 32 rounds of running Sphinx. The coalition
can be identified by the fact that their trust scores do not increase as
those of the honest sensors.
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