
O N C O L L A B O R AT I V E I N T R U S I O N D E T E C T I O N
emmanouil vasilomanolakis

Dissertation
Zur Erlangung des akademischen Grades

Doktor rerum naturalium (Dr. rer. nat.)

genehmigte Dissertationsschrift in englischer Sprache
von MSc. Emmanouil Vasilomanolakis

aus Darmstadt
geboren in Cholargos, Griechenland

Erstreferent: Prof. Dr. Max Mühlhäuser
Korreferent: Prof. Dr. Simin Nadjm-Tehrani

Tag der Einreichung: 10. May 2016

Tag der Prüfung: 11. July 2016

Fachgebiet Telekooperation
Fachbereich Informatik

Technische Universität Darmstadt
Hochschulkennziffer D-17

Darmstadt, 2016

Emmanouil Vasilomanolakis: On Collaborative Intrusion Detection, c©
May, 2016

Dedicated to the loving memory of my father
Dr. Michael Vasilomanolakis.

A B S T R A C T

Cyber-attacks have nowadays become more frightening than
ever before. The growing dependency of our society on net-
worked systems aggravates these threats; from interconnected

corporate networks and Industrial Control Systems (ICSs) to smart
households, the attack surface for the adversaries is increasing. At
the same time, it is becoming evident that the utilization of classic
fields of security research alone, e.g., cryptography, or the usage of
isolated traditional defense mechanisms, e.g., firewalls and Intrusion
Detection Systems (IDSs), is not enough to cope with the imminent
security challenges.

To move beyond monolithic approaches and concepts that follow a
“cat and mouse” paradigm between the defender and the attacker,
cyber-security research requires novel schemes. One such promis-
ing approach is collaborative intrusion detection. Driven by the lessons
learned from cyber-security research over the years, the aforesaid no-
tion attempts to connect two instinctive questions: “if we acknowl-
edge the fact that no security mechanism can detect all attacks, can we
beneficially combine multiple approaches to operate together?” and
“as the adversaries increasingly collaborate (e.g., Distributed Denial
of Service (DDoS) attacks from whichever larger botnets) to achieve
their goals, can the defenders beneficially collude too?”. Collabora-
tive intrusion detection attempts to address the emerging security
challenges by providing methods for IDSs and other security mech-
anisms (e.g., firewalls and honeypots) to combine their knowledge
towards generating a more holistic view of the monitored network.

This thesis improves the state of the art in collaborative intrusion
detection in several areas. In particular, the dissertation proposes
methods for the detection of complex attacks and the generation of
the corresponding intrusion detection signatures. Moreover, a novel
approach for the generation of alert datasets is given, which can assist
researchers in evaluating intrusion detection algorithms and systems.
Furthermore, a method for the construction of communities of collab-
orative monitoring sensors is given, along with a domain-awareness
approach that incorporates an efficient data correlation mechanism.
With regard to attacks and countermeasures, a detailed methodology
is presented that is focusing on sensor-disclosure attacks in the con-
text of collaborative intrusion detection.

contributions The scientific contributions can be structured into
the following categories:

v

alert data generation This thesis deals with the topic of alert
data generation in a twofold manner: first it presents novel approaches
for detecting complex attacks towards generating alert signatures for
IDSs; second a method for the synthetic generation of alert data is pro-
posed. In particular, a novel security mechanism for mobile devices
is proposed that is able to support users in assessing the security
status of their networks. The system can detect sophisticated attacks
and generate signatures to be utilized by IDSs. The dissertation also
touches the topic of synthetic, yet realistic, dataset generation for the
evaluation of intrusion detection algorithms and systems; it proposes
a novel dynamic dataset generation concept that overcomes the short-
comings of the related work.

collaborative intrusion detection As a first step, the the-
sis proposes a novel taxonomy for collaborative intrusion detection ac-
companied with building blocks for Collaborative IDSs (CIDSs). More-
over, the dissertation deals with the topics of (alert) data correlation
and aggregation in the context of CIDSs. For this, a number of novel
methods are proposed that aim at improving the clustering of mon-
itoring sensors that exhibit similar traffic patterns. Furthermore, a
novel alert correlation approach is presented that can minimize the
messaging overhead of a CIDS.

attacks on cidss It is common for research on cyber-defense to
switch its perspective, taking on the viewpoint of attackers, trying to
anticipate their remedies against novel defense approaches. The the-
sis follows such an approach by focusing on a certain class of attacks
on CIDSs that aim at identifying the network location of the monitor-
ing sensors. In particular, the state of the art is advanced by proposing
a novel scheme for the improvement of such attacks. Furthermore, the
dissertation proposes novel mitigation techniques to overcome both
the state of art and the proposed improved attacks.

evaluation All the proposals and methods introduced in the dis-
sertation were evaluated qualitatively, quantitatively and empirically.
A comprehensive study of the state of the art in collaborative intru-
sion detection was conducted via a qualitative approach, identifying
research gaps and surveying the related work. To study the effective-
ness of the proposed algorithms and systems extensive simulations
were utilized. Moreover, the applicability and usability of some of
the contributions in the area of alert data generation was additionally
supported via Proof of Concepts (PoCs) and prototypes.

The majority of the contributions were published in peer-reviewed
journal articles, in book chapters, and in the proceedings of interna-
tional conferences and workshops.

vi

Z U S A M M E N FA S S U N G

Cyberangriffe entwickeln sich zu immer ausgeklügelteren Pro-
zessen mit zunehmend schwerwiegenderen Folgen für die
Angegriffenen. Gleichzeitig sind immer mehr Aspekte un-

seres Lebens durch Cyber-Systeme verbunden, werden über diese
gesteuert und von diesen beeinflusst – von großen Industrieanalagen
über Firmennetzwerke bis hin zu privaten Häusern und Endgeräten.
Diese beiden Veränderungen beeinflussen sich gegenseitig und stellen
die Forschung an Schutzmaßnahmen vor stets neue Herausforderun-
gen. Klassische Forschungsfelder der Cybersicherheit, wie z.B. die
Kryptografie, sowie monolithische und isoliert betriebene Schutzsys-
teme, wie z.B. Firewalls und Eindringlingserkennungssysteme (intru-
sion detection systems, IDS), sind in der heutigen Form nicht mehr
ausreichend, um mit den neuen Herausforderungen angemessen um-
zugehen.

Die Arbeit im Feld der Cybersicherheit benötigt neue Ansätze, um
bisherige monolithische Schutzsysteme und das weiter beschleuni-
gende Rennen zwischen Angreifern und Verteidigern zu gewinnen.
Der Einsatz von kollaborativen Eindringlingserkennungssystemen (col-
laborative intrusion detection systems, CIDS) ist ein solcher, vielver-
sprechender Ansatz. Die Methodik hinter CIDS fußt auf zwei Grun-
dannahmen: 1. Einzelne Schutzsysteme können niemals alle Angriffe
erkennen, daher werden verschiedene Schutzsysteme miteinander kom-
biniert. 2. Da Angreifer zunehmend kollaborieren (wie beispielsweise
bei DDoS-Angriffen oder der Nutzung von Botnets), müssen dies
auch Schutzsysteme tun. CIDS begegnen den o.g. neuen Herausfor-
derungen mit neuen Methoden für IDS und für andere Schutzmech-
anismen (z.B. Firewalls und Honeypots); dabei ist es das Ziel, das
Wissen dieser Systeme zu einer umfassenderen Sicht auf das zu über-
wachende Netzwerk zusammenzufassen.

Diese Dissertation erweitert den Stand der Wissenschaft in der kol-
laborativen Angriffserkennung in mehreren Bereichen. Insbesondere
werden Methoden zur Erkennung komplexer Angriffe sowie die Erzeu-
gung der dazu passenden Angriffs-Signaturen vorgeschlagen. Weiter-
hin wird auch ein neuartiger Ansatz zur Erstellung von Warn-Daten-
sätzen vorgestellt, welcher Wissenschaftler bei der Evaluierung von
zukünftigen IDS-Algorithmen und Systemen unterstützten kann. In
Bezug auf Angriffs- und Schutzmechanismen wird eine detaillierte
Methodik zur Angriffserkennung mittels Sensoren im Kontext von
kollaborativer Angriffserkennung vorgestellt.

vii

beiträge Die wissenschaftlichen Beiträge dieser Dissertation lassen
sich wie folgt kategorisieren:

aggregation von warnungen Die Herausforderung der Ag-
gregation von Warnungen wird hier in zwei Schritten bearbeitet: Er-
stens werden neuartige Ansätze zur Erkennung von komplexen An-
griffen einschließlich der Generierung von Signaturen für IDSs vorge-
stellt. Zweitens wird eine Methode zur Erzeugung von synthetischen
Warnungen vorgestellt. Im Detail wird ein neuer Sicherheitsmecha-
nismus für mobile Geräte vorgeschlagen, welcher Benutzer bei der
Beurteilung der Sicherheit von Netzwerken unterstützt. Diese Meth-
ode kann ausgefeilte Angriffe erkennen und daraus Signaturen erzeu-
gen, welche dann von IDSs verwendet werden können. Diese Disser-
tation betrachtet auch die Erzeugung von synthetischen, aber den-
noch realistischen Datensätzen, welche die Evaluierung von IDS-Al-
gorithmen und Systeme unterstützen. Dazu wird ein neues Konzept
zur dynamischen Generierung von Datensätzen verwendet, welches
die Einschränkungen der verwandten Arbeiten löst.

kollaborative angriffserkennung In einem ersten Schritt
wird eine neuartige Taxonomie zusammen mit Bausteinen für kollab-
orative IDSs (CIDSs) vorgestellt. Weiterhin behandelt diese Disserta-
tion die Themen der Korrelation von Warnmeldungen bzw. Daten,
sowie deren Aggregation im Kontext von CIDSs. Dafür wird eine
Reihe von neuen Methoden vorgeschlagen, die auf eine Verbesserung
der Gruppierung (engl. clustering) von Sensoren abzielen, welche
ähnliche Muster im Netzwerkverkehr aufweisen. Weiterhin wird ein
neuer Ansatz zur Korrelation von Warnungen vorgestellt, welcher
den Nachrichten-Overhead von CIDSs verringert.

angriffe auf cidss Für die Forschung in der Cyber-Sicherheit
ist es typisch, einen Perspektivwechsel vorzunehmen, um aus der
Sicht der Angreifer die Reaktion auf neue Schutz-Mechanismen zu
bestimmen. Diese Dissertation folgt diesem Ansatz und fokussiert
dabei auf Klassen von Angriffen gegen CIDSs, die darauf abzielen,
die Position von Sensoren im Netzwerk zu bestimmen. Hier wird
der Stand der Wissenschaft durch eine Verbesserung dieser Positions-
bestimmung erweitert. Weiterhin werden neue Schutzmechanismen
vorgestellt, um Angriffe nach dem Stand der Wissenschaft als auch
deren Verbesserungen zu unterbinden.

evaluierung Alle vorgestellten Methoden wurden sowohl qual-
itativ als auch quantitativ und empirisch evaluiert. Mit dem qualita-
tiven Ansatz wurde eine umfassende Studie über den Stand der Wis-
senschaft in kollaborativen Angriffserkennungs-Systemen angefertigt,
um Forschungsfragen zu identifizieren und verwandte Arbeiten zu

viii

erfassen. Die Effektivität der vorgeschlagenen Algorithmen und Sys-
teme wurde anhand von umfassenden Simulationsstudien gezeigt.
Weiterhin wurden die Beiträge im Bereich der Korrelation von War-
nungen auf ihre Anwendbarkeit und Benutzbarkeit anhand von Proof
of Concepts (PoCs) sowie Prototypen überprüft.

Die meisten hier vorgestellten Beiträge wurden im Peer-Review-
Verfahren von Wissenschaftlern geprüft und in Journalen, Buchkapiteln
und Tagungsbänden internationaler Konferenzen und Workshops ver-
öffentlicht.

ix

A C K N O W L E D G M E N T S

First, I would like to express me warmest thanks to Prof. Dr. Max
Mühlhäuser. Max trusted me, gave me the freedom to discover my
research interests and always provided excellent and to-the-point ad-
vice whenever I felt lost.

Likewise, I would like to thank Prof. Dr. Simin Nadjm-Tehrani for her
interest in my research work, her helpful comments and for agreeing
in (co-)supervising my dissertation.

Similarly, my work and this thesis would not have come to place with-
out the assistance of Mathias Fischer.

In addition, this thesis would not be the same without the support
and encouragement of a great number of TK (and ex-TK) members. I
find it hard to imagine a better working environment: Jörg Daubert,
Shankar Karuppayah, Carlos Garcia Cordero, Tim Grube, Siavash
Valipour, Florian Volk, Sheikh Mahbub Habib, Sascha Hauke, Fábio
Borges, and Stefan Schiffner. In the same context, my gratitude to sev-
eral TK people whose work supported me over the years: Elke Halla,
Nina Jäger, Silke Romero, Denny Fuchs, Karin Tillack, Fabian Her-
rlich, Elke Reimund, and all other wonderful TK members.

Moreover, a big thanks goes to AGT International for their full support
during my research. In fact, without this support, I would not be able
to neither start or finish my studies. Many thanks to Joachim Schaper,
Panayotis Kikiras, Alexander Wiesmaier, and all the people I had the
honor to work with in AGT.

Furthermore, a very special thanks goes to Katerina Stourna, Ioannis
Bouziannis, Panos Protopapas, Michalis Kiparisis (and many others!)
for their support and understanding during the last three years of my
life. Last, and definitely not least, I want to thank my family for their
unconditional love and support.

xi

C O N T E N T S

i preface 1

1 introduction 3

1.1 Problem Statement . 4

1.2 Thesis contributions . 6

1.2.1 Taxonomy and Survey of CIDSs 7

1.2.2 Alert Data Generation 7

1.2.3 Collaborative Intrusion Detection 8

1.3 Publications . 9

1.4 Thesis Outline . 11

2 background 13

2.1 Intrusion Detection Systems (IDSs) 14

2.1.1 Classifications and definitions 14

2.1.2 Passive and active monitoring 15

2.2 Honeypots . 16

2.2.1 Mobile Honeypots 17

2.2.2 Honeypots for ICSs 18

2.2.3 Summary . 18

2.3 Evaluating IDSs . 18

2.3.1 IDS-Specific Datasets 18

2.3.2 Dynamic Creation of Datasets 19

2.3.3 Summary . 20

2.4 Conclusion . 20

3 collaborative intrusion detection 21

3.1 Introduction . 22

3.2 Requirements . 23

3.3 Attacks on CIDSs . 25

3.3.1 External attacks 26

3.3.2 Internal attacks 29

3.3.3 Discussion . 31

4 taxonomy and state-of-the-art 33

4.1 Taxonomy of Collaborative Intrusion Detection 34

4.1.1 Local monitoring 35

4.1.2 Membership management 36

4.1.3 Correlation and aggregation 37

4.1.4 Data dissemination 39

4.1.5 Global Monitoring 39

4.2 State-of-the-Art . 40

4.2.1 Centralized CIDSs 40

4.2.2 Hierarchical CIDSs 44

4.2.3 Distributed CIDSs 48

4.2.4 Qualitative Comparison 57

xiii

xiv contents

4.3 Summary . 62

ii alert data creation 65

5 hostage mobile honeypot 67

5.1 Introduction . 68

5.2 System Overview . 69

5.2.1 Architecture . 69

5.2.2 Graphical User Interface 71

5.2.3 Protocols Emulation 73

5.2.4 Formal Model . 76

5.2.5 Detection Mechanisms in HosTaGe 77

5.3 Evaluation . 79

5.3.1 Honeypot Comparison 79

5.3.2 Multi-Stage attacks 81

5.3.3 Honeypot Evasion 82

5.3.4 Signature Generation 82

5.4 Summary . 83

6 tracing cyber incident monitor 85

6.1 Introduction . 86

6.2 Architecture of TraCINg 87

6.2.1 TraCINg Core . 87

6.2.2 GUI . 88

6.2.3 Sensors . 88

6.2.4 Alerts . 90

6.3 Alert data analysis . 91

6.3.1 System Setup . 92

6.3.2 Data analysis . 92

6.3.3 Correlation of attacks 94

6.4 Summary . 98

7 id2t : an intrusion detection dataset creation

toolkit 99

7.1 Introduction . 100

7.2 Requirements . 100

7.2.1 Functional Requirements 101

7.2.2 Non-Functional Requirements 102

7.3 ID2T . 103

7.3.1 Architecture . 103

7.3.2 Attack Generation 104

7.3.3 Intrusion Detection Dataset Toolkit (ID2T) Proof
of concept . 105

7.4 Evaluation . 106

7.4.1 Performance Evaluation 107

7.4.2 Artifacts Avoidance 108

7.5 Discussion . 111

7.6 Summary . 112

contents xv

iii collaborative intrusion detection systems 113

8 community-based collaborative intrusion detec-
tion 115

8.1 Introduction . 116

8.2 Community-based Collaborative Intrusion Detection . 117

8.2.1 Basic Concept . 117

8.2.2 Formal Model . 118

8.2.3 Parameters for Building Communities 118

8.2.4 Community Formation 120

8.2.5 Community-based Intrusion Detection 123

8.3 Evaluation . 123

8.3.1 The DARPA Dataset 124

8.3.2 The LERAD Integration 125

8.3.3 Experimental Setup 126

8.3.4 Results . 127

8.4 Summary . 131

9 skipmon : a domain-aware collaborative intru-
sion detection system 133

9.1 Introduction . 134

9.2 SkipMon System Architecture 135

9.2.1 Local Monitoring 135

9.2.2 SkipNet Overlay 136

9.2.3 Alert Dissemination 136

9.2.4 Alert Correlation 138

9.2.5 Community Formation 141

9.3 Implementation . 141

9.4 Evaluation . 141

9.4.1 Dataset Description 142

9.4.2 Evaluation Setup 143

9.4.3 Results . 144

9.5 Summary . 148

10 probe-response attacks 149

10.1 Introduction . 150

10.2 PREPARE . 151

10.2.1 System Overview 151

10.2.2 Improving Probe Response Attacks (PRAs) . . . 152

10.2.3 Attack Detection and Mitigation 156

10.3 Evaluation . 159

10.3.1 Simulation Setup 159

10.3.2 Simulation Results 160

10.3.3 Real-World Experiments 164

10.4 Summary . 165

iv epilogue 167

11 conclusion and outlook 169

11.1 Conclusion . 170

xvi contents

11.1.1 Alert Data Generation 170

11.1.2 Collaborative Intrusion Detection 171

11.2 Outlook . 172

11.2.1 Alert Data Generation 172

11.2.2 Collaborative Intrusion Detection 174

v appendix 177

a appendix a - hostage further evaluation 179

a.1 Malware detection in HosTaGe 179

a.2 Battery consumption . 180

b appendix b - skipnet background 183

b.1 SkipNet . 183

c appendix c - skipmon evaluation 185

c.1 SkipMon Further Evaluation 185

bibliography 187

L I S T O F F I G U R E S

Figure 1 Amount of monetary damage caused by re-
ported cyber crime from 2001 to 2014 (in mil-
lion U.S. dollars). Data taken from the Internet
Crime Complain Center (IC3) and Statista. . . 4

Figure 2 Size of the global Internet of Things (IoT) mar-
ket from 2009 to 2019 (in billion U.S. dollars).
A star (*) indicates an estimated value. Data
taken from HKExnews and Statista. 5

Figure 3 Thesis overview and contributions. 7

Figure 4 Overview of centralized, decentralized, and dis-
tributed IDS architectures that consist of moni-
tors (M) and analysis units (A). 23

Figure 5 Possible network positions of attackers.M rep-
resents the different monitoring points of the CIDS. 25

Figure 6 Overview of different attacks for CIDSs. 26

Figure 7 Building blocks for CIDSs. 34

Figure 8 Taxonomy of CIDSs. 36

Figure 9 Overview of the Chapter and key contributions. 67

Figure 10 Attack surfaces and collaborative capabilities
of HosTaGe. 68

Figure 11 High level architectural view of HosTaGe. . . . 70

Figure 12 Graphical User Interface of HosTaGe. 71

Figure 13 EFSM of the attack detection and signature gen-
eration mechanism. 76

Figure 14 EFSM for Payload Level Detection (PLD) in the
case of Stuxnet propagation. 78

Figure 15 Comparison of detected attacks on HosTaGe and
Conpot for Hypertext Transfer Protocol (HTTP),
Modbus, S7 and Telnet. Note, that Conpot does
not support the Telnet protocol. 80

Figure 16 Comparison of unique and common malicious
IP addresses targeting HosTaGe and Conpot . . 81

Figure 17 Overview of the Chapter and key contributions. 85

Figure 18 High level architectural view of TraCINg. . . . 87

Figure 19 GUI examples of TraCINg. 89

Figure 20 Graph representation of the alert data: attack-
ers clustered close to their main targets and
single-dimensional correlation (cf. Section 6.3.3.1)
seen as edges connecting to neighbor clusters. 94

Figure 21 Ratio of unique attackers targeting multiple sen-
sors in TraCINg. 96

xvii

xviii List of Figures

Figure 22 Unique attackers in TraCINg within a sliding
window of one hour and with measurements
taken every 30 minutes. 97

Figure 23 Overview of the Chapter and key contributions. 99

Figure 24 High level overview of the ID2T concept. 101

Figure 25 A high level view of the ID2T Architecture. . . 103

Figure 26 GUI view of the ID2T prototype. 106

Figure 27 Performance of the statistics module for differ-
ent dataset sizes. 107

Figure 28 Attack generation time with respect to the num-
ber of generated packets. 108

Figure 29 Time To Live (TTL) distribution comparison of
the MAWI dataset and ID2T. 109

Figure 30 Modeling time between two consecutive pack-
ets with a 10 p/s rate. 109

Figure 31 Modeling time between two consecutive pack-
ets with a 100 p/s rate. 110

Figure 32 Overview of the Chapter and key contributions. 115

Figure 33 Example cases of two communities (left), three
communities (center), and four communities
(right), with sensors s and community heads
s?. 119

Figure 34 Modifications made to the 1999 DARPA Dataset.125

Figure 35 Detection accuracy and precision at different
FAs when communities are built using Algo-
rithm 1. 129

Figure 36 Accuracy when the communities are built us-
ing Algorithm 2. 130

Figure 37 Overview of the Chapter and key contributions. 133

Figure 38 High level architecture of SkipMon. 136

Figure 39 Messages in SkipMon. 139

Figure 40 Domain awareness example in SkipMon. 140

Figure 41 SkipMon implementation overview. 142

Figure 42 Proposed communities by SkipMon (with flood-
ing) compared to a centralized system. 145

Figure 43 Proposed communities by SkipMon (with gos-
siping) compared to a centralized system. . . . 145

Figure 44 False positives and false negatives (flooding). . 146

Figure 45 False positives and false negatives (gossiping). 146

Figure 46 Strict domain awareness in SkipMon. 147

Figure 47 Partial domain awareness in SkipMon. 147

Figure 48 Overview of the Chapter and key contributions. 149

Figure 49 Probe Response Attack (PRA) example [175]. . 151

Figure 50 Probe REsPonse Attack fRamEwork (PREPARE)
attack framework’s high-level overview. 152

Figure 51 Distribution of possible markers in DShield. . 153

List of Figures xix

Figure 52 Generic Marker Encoding Methodology (GMEM)
flow overview example. 154

Figure 53 Ratio ra utilization example for DShield data. 157

Figure 54 Destination port frequency for different time-
windows in DShield. 158

Figure 55 Destination port frequency in DShield. 158

Figure 56 Attack duration with respect to marker values
and checksum bits. 160

Figure 57 Amount of required probes with respect to marker
values and checksum bit. 161

Figure 58 False positives for various encoding configura-
tions. 161

Figure 59 PRA comparison: time required for the com-
plete enumeration of sensors. 162

Figure 60 Attacks/Monitors ratio (ra) development un-
der a PRA. 163

Figure 61 Development of non-attacked destination ports
under a PRA. 163

Figure 62 Top 10 Ports after the execution of a PRA as
generated by DShield. 164

Figure 63 Attack Testbed Architecture. 180

Figure 64 Power consumption of HosTaGe in compari-
son to other applications. 181

Figure 65 Power consumption of HosTaGe for various set-
tings. 182

Figure 66 SkipNet routing infrastructure example [67] . 183

Figure 67 Proposed communities by SkipMon (with gos-
siping and k between 5 and 6) compared to a
centralized system. 185

Figure 68 Proposed communities by SkipMon (with gos-
siping and k between 7 and 8) compared to a
centralized system. 186

L I S T O F TA B L E S

Table 1 Relationship between Attacks on CIDSs and Re-
quirements: Check marks 3 indicate a relation
between an individual requirement and IDS at-
tacks, while checkmark symbols in brackets [3]
an indirect relation. Finally, x marks 7 show
the absence of any relationship. 32

Table 2 Centralized CIDSs and their Building Blocks.
The x marks 7 indicate that the respective building
block is not available. 44

Table 3 Hierarchical CIDSs and their Building Blocks.
A question mark ? symbol indicates unknown
cases. 48

Table 4 Distributed CIDSs and their Building Blocks. The
x marks 7 indicate that the respective building block
is not available, while a question mark ? symbol in-
dicates unknown cases. 57

Table 5 CIDSs and their Building Blocks. The x marks
7 indicate that the respective building block is not
available, while a question mark ? symbol indicates
unknown cases. 58

Table 6 CIDSs and the proposed requirements. Check-
marks 3 indicate the fulfillment of the individual
requirement, x marks 7 their non-fulfillment, aver-
age symbols Ø their partial match and a question
mark ? symbol indicates unknown cases. 59

Table 7 Sensor description and geographical informa-
tion in TraCINg. 92

Table 8 Most popular attack types and the correspond-
ing number of occurrences in a 5 month period
of TraCINg deployment. 93

Table 9 Top 10 attacked ports and protocols in a 5 month
period of TraCINg deployment. 93

Table 10 Overall merging performance of ID2T for var-
ious datasets and attacks. 108

Table 11 Example of similarity scores for node n3. . . . 141

Table 12 DShield dataset example 142

Table 13 Communication overhead comparison 144

Table 14 Malware Deployed In The Testbed. 180

xx

L I S T I N G S

Listing 1 Modbus attack signature generated by HosTaGe. 79

xxi

A C R O N Y M S

ASL Attack Specification Language

CDDHT Cyber Disease DHT

DHT Distributed Hash Table

DIDMA Distributed Intrusion Detection system using Mobile Agents

DOMINO Distributed Overlay for Monitoring Internet Outbreaks

DoS Denial of Service

DDoS Distributed Denial of Service

IDS Intrusion Detection System

INDRA Intrusion Detection and Rapid Action

LarSID Large Scale Intrusion Detection

MA Mobile Agent

MAD Mobile Agents Dispatcher

PKI Public Key Infrastructure

SA Static Agent

SPoF Single Point of Failure

TTP Trusted Third Party

VPN Virtual Private Network

P2P Peer-to-Peer

CRIM Cooperative Intrusion Detection Framework

CIDS Collaborative IDS

AIDS Anomaly IDS

ANIDS Anomaly Network IDS

PII Personally Identifiable Information

DIDS Distributed Intrusion Detection System

APT Advanced Persistent Threat

IDMEF Intrusion Detection Message Exchange Format

xxii

acronyms xxiii

DNS Domain Name System

URI Uniform Resource Identifier

CLB Constrained Load Balancing

LGPL Lesser General Public License

PRA Probe Response Attack

PREPARE Probe REsPonse Attack fRamEwork

UI User Interface

GMEM Generic Marker Encoding Methodology

GrIDS Graph Based Intrusion Detection System

AAFID Autonomous Agents For Intrusion Detection

EMERALD Event Monitoring Enabling Responses to Anomalous
Disturbances

HIDE Hierarchical Intrusion Detection

IDA Intrusion Detection Agent

AA Alerting Agents

PHAD Packet Header Anomaly Detector

LERAD Learning Rules for Anomaly Detection

FA False Alarm

VM Virtual Machine

CA Certificate Authority

EFSM Extended Finite State Machine

FSM Finite State Machine

R/W Read/Write

ICS Industrial Control System

PLC Programmable Logic Controller

RTU Remote Terminal Unit

SPLD Single-Protocol Level Detection

PLD Payload Level Detection

MSLD Multi-Stage Level Detection

xxiv acronyms

IoT Internet of Things

ID2T Intrusion Detection Dataset Toolkit

FLAME Flow-Level Anomaly Modeling Engine

PoD Ping of Death

OS Operating System

TTL Time To Live

GUI Graphical User Interface

VOIP Voice Over IP

IPS Intrusion Prevention System

PCI Protocol Control Information

PoC Proof of Concept

SNMP Simple Network Management Protocol

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

SIP Session Initiation Protocol

Part I

P R E FA C E

The first part of the thesis aims at introducing the reader
to the topic and supporting her by discussing the required
background knowledge and definitions that will be used
in the course of the thesis. Chapter 1 serves as an intro-
duction to the motivation of the thesis as well as to its
structure. Chapter 2 provides the reader with background
knowledge of various topics that are fundamental for the
understanding of the remainder of the thesis. Chapter 3

touches the topic of collaborative intrusion detection and
respective terms that will be utilized in the thesis. Lastly,
Chapter 4 proposes a novel taxonomy for collaborative in-
trusion detection and conducts a detailed survey of the
related work.

1
I N T R O D U C T I O N

The only truly secure system is one
that is powered off, cast in a block of concrete

and sealed in a lead-lined room with armed guards.

— Gene Spafford

Research in the area of cyber-security has increased signifi-
cantly over the last years. This fact however is neither ran-
dom nor unforeseen; rather it is highly connected to the mas-

sive increase in the number and sophistication of cyber-attacks. Re-
searchers nowadays have realized that existing and future infrastruc-
tures, designed by humans, cannot be perfectly secure. In this context,
research towards novel cyber-security systems is fundamental for the
protection and the resilience of networks. In addition, regardless of
the specifics of a newly proposed security mechanism, researchers are
obliged to evaluate their ideas in a scientific, transparent and broadly
acceptable manner. However, as it will become evident in the course
of this thesis, this evaluation procedure is not at all trivial; in fact it
raises several additional research challenges.

This Ph.D. thesis contributes in the field of cyber-security. In partic-
ular, the dissertation significantly improves the state of the art in the
areas of alert data generation and intrusion detection with a twofold
vision. First, it improves the techniques for generating alert data and hence
evaluating security mechanisms and second it significantly advances the
field of collaborative intrusion detection.

This introductory chapter is structured as follows. Section 1.1 de-
scribes the motivation, the setting and the research questions that this
thesis is addressing. Afterwards, Section 1.2 gives the reader a sum-
mary of the contributions, while Section 1.3 tabulates the correspond-
ing publications that have been made as a result of the conducted
research. Lastly, the structure of the thesis is given in Section 1.4.

3

4 introduction

problem statement

The dependency of our society on networked computers has become
frightening: In the economy, all-digital networks have turned from
facilitators to drivers; as cyber-physical systems are coming of age,
computer networks are now becoming the central nervous systems
of our physical world – even of highly critical infrastructures such as
the power grid. At the same time, the 24/7 availability and correct
functioning of networked computers has become much more threat-
ened: The number of sophisticated and highly tailored attacks on IT
systems has significantly increased [148]. The monetary damage of
such attacks is also substantial (see Figure 1).

Figure 1: Amount of monetary damage caused by reported cyber crime
from 2001 to 2014 (in million U.S. dollars). Data taken from the
Internet Crime Complain Center (IC3) and Statista.

Furthermore, emerging technology trends such as the concept of
the IoT [61] and/or the ongoing convergence of ICSs with the Inter-
net, further highlight the challenges that need to be tackled from a
security perspective. In fact, the author’s preliminary work towards
a security analysis of existing or proposed IoT architectures suggests
that the topics of security and privacy are yet to be achieved [60, 170].
As the size of the IoT market (see Figure 2) is planned to grow expo-
nentially, it is to be expected that the total number of cyber attacks
will further increase.

Intrusion Detection Systems (IDSs) are a key component of the cor-
responding defense measures nowadays; they have been extensively
studied and utilized in the past [87, 49]. However, since conventional
IDSs are not scalable to big company networks and beyond, nor to
massively parallel attacks, Collaborative IDSs (CIDSs) have emerged
[21, 196]. Such systems consist of several monitoring components that

1.1 problem statement 5

Figure 2: Size of the global IoT market from 2009 to 2019 (in billion U.S.
dollars). A star (*) indicates an estimated value. Data taken from
HKExnews and Statista.

collect and exchange data. Depending on the specific CIDS architec-
ture, central or distributed analysis components mine the gathered
data to identify attacks. Resulting alerts are correlated among multi-
ple monitors in order to create a holistic view of the network moni-
tored.

The novel character of the CIDS area results to many research ques-
tions and gaps [196, 172, 107] that will be in-depth discussed in this
dissertation. At a glance, the field combines research from many dif-
ferent areas of computer science that include but are not limited to:
intrusion detection algorithms (e.g., novel anomaly-based detection
algorithms [25]), distributed architectures (e.g., Peer-to-Peer (P2P) sys-
tems [96]), data correlation and aggregation (e.g., similarity-based
alert correlation algorithms [110]), mechanisms for data dissemina-
tion (e.g., gossiping in distributed environments [76]), etc.

With respect to the core areas of CIDSs this thesis is attempting to
answer the following research questions:

• How can the collaboration part of a CIDS be practically realized
and which parameters influence such a process?

• How effective is the exchange of data on the detection, rather
than the alert level, in the context of collaborative anomaly-
based detection?

• How can a CIDS be practically realized in large networks that
enforce (security policy) restrictions to the flow of data on dif-
ferent sub-networks?

6 introduction

• What kind of novel and efficient correlation mechanisms can
be designed for minimizing the communication overhead of a
CIDS?

• What is the impact of CIDS disclosure attacks, and how can their
design, execution and mitigation be realistically improved?

Apart from the aforementioned research questions, the author’s
work in the area of CIDSs revealed the need for additional work to-
wards holistically approaching the collaborative intrusion detection
field. First, there is a need for novel detection mechanisms, that are
able to enhance the state of the art, in the area of ICSs. Furthermore,
the problem of creating datasets, that are realistic enough to be uti-
lized for the evaluation of intrusion detection systems and algorithms,
has not be tackled so far in the related work. In this sense, the second
part of the dissertation is emphasizing in the following correspond-
ing research questions. As the reader may notice, these are highly
connected to the topics of alert data generation and evaluation mech-
anisms for intrusion detection systems and algorithms.

• How can novel and previously unknown attacks that target crit-
ical infrastructure, e.g., ICSs, be modeled and identified?

• Can the knowledge gained from the previous research question
be utilized to support existing IDSs’ infrastructure?

• Is it possible for a security mechanism, such as a honeypot, to
detect complex attacks that involve multiple adversarial steps?

• How likely is it for an adversary to evade such a security mech-
anism?

• Which are the parameters in a synthetically generated dataset,
intended for intrusion detection, that can reveal its artificial na-
ture?

thesis contributions

This thesis contributes in several key areas of collaborative intrusion
detection and alert data generation. An overview of the structure of
the dissertation along with the different contributions is depicted in
Figure 3. This section briefly summarizes the various contributions
per chapter along with the respective scientific publications. After-
wards, Section 1.3 provides the reader a detailed overview of the
publications that are related to the thesis at hand.

1.2 thesis contributions 7

Figure 3: Thesis overview and contributions.

Taxonomy and Survey of CIDSs

The first contribution of this thesis is given in Chapter 4, in which a
novel taxonomy for CIDSs is proposed, accompanied by a compre-
hensive survey and qualitative comparison of the state of the art
[172, 167]. To the best of the knowledge of the author, this is the
most holistic and up to date study of CIDSs. In addition, this chapter
serves as additional motivation for the thesis, in the sense that none
of the existing systems can neither fulfill all the requirements pro-
posed in Chapter 3, nor depict an architecture that is suitable for the
protection of large network infrastructures. Furthermore, the study of
the related work highlights the need for more efficient, realistic and
broadly acceptable means for the evaluation of such systems.

Alert Data Generation

The second part of this dissertation copes with the topic of alert data
generation. In more details, this subject and the challenge of creat-
ing mechanisms that are able to detect attacks, correlate events and
produce usable alert data and datasets is firstly touched in Chap-
ter 5. Here, the thesis introduces a security tool for mobile devices,
namely HosTaGe, which is able to detect malicious behavior, study
the adversaries’ techniques, correlate attacks, and generate respective
signatures for the identified attacks [168, 169, 174, 177]. Furthermore,

8 introduction

the proposed system deals with attacks related to the IoT and ICSs

[152]1.
Chapter 6 presents TraCINg, a cyber incident monitor that takes

as input data generated by monitoring sensors [171]. Among others,
TraCINg makes use of HosTaGe honeypots, hence creating a collabora-
tive platform that is able to aggregate the results of sensors from all
over the world. Moreover, the chapter presents a long-term study of
deployment of the cyber incident monitor to examine current attack
trends and analyze the adversarial behavior. The study also empha-
sizes in identifying correlated attacks that target more than one of the
utilized sensors within a certain time window.

Lastly, Chapter 7 proposes a toolkit for the generation of synthetic,
yet realistic, datasets for the evaluation of intrusion detection sys-
tems and algorithms [29, 176][108]1. First, a study of the related work
highlights the challenges for the design of such a system and the
parameters and properties which can introduce artifacts in a gen-
erated dataset. The proposed system, namely the Intrusion Detec-
tion Dataset Toolkit (ID2T), exhibits a flexible architecture offering
a methodological approach for injecting network files with cyber-
attacks to generate labeled datasets.

Collaborative Intrusion Detection

The third part of the dissertation copes with the core area of collabo-
rative intrusion detection. In Chapter 8, the thesis presents the idea of
communities of sensors that collaborate by exchanging features of net-
work traffic to towards creating holistic models of the monitored net-
works [30]. This way it is possible to generate normality models to be
used by anomaly-based detection algorithms. The proposed CIDS con-
cept of this chapter is also the first one that shifts from the alert level
exchange to the detection level. To practically realize this concept two
stochastic algorithms are developed for grouping monitoring sensors
to communities.

Chapter 9 builds on top of the communities idea, presented in the
previous chapter. That is, a novel fully distributed CIDS, namely Skip-
Mon, is proposed [173] [84]1. SkipMon improves the related work in
a multitude of ways. The system is the first one to fulfill the do-
main awareness requirement, i.e., the ability to dynamically constrain
alert dissemination with respect to security policies. Second, a novel
similarity-based correlation mechanism is proposed that can effec-
tively correlate large amounts of alert data. The latter, works on the
basis of bloom filters which can also be beneficial in terms of the pri-
vacy of the alert data. By making use of such a correlation mechanism
the system is able to identify and connect sensors that experience sim-
ilar traffic patterns.

1 This work is a Master thesis supervised by the author of this thesis.

1.3 publications 9

Finally, Chapter 10 introduces contributions in the area of disclo-
sure attacks to CIDSs. Specifically, the chapter deals with a particular
class of attacks, called Probe Response Attacks (PRAs), which can be
utilized for identifying the network location of monitoring sensors.
The thesis proposes an open-source framework that enables the de-
velopment, improvement, execution and detection of PRAs [175][154]1.
In addition, a novel technique is proposed for the design of such at-
tacks that enables the execution of PRAs with a significantly less time
required. Lastly, a multitude of techniques that focus on the detection
and mitigation of the attacks are proposed and examined.

publications

Some parts of this thesis have been published in international peer-
reviewed journals, book chapters, conferences and workshops. The
following is a detailed list of these publications for each of the main
chapters of the thesis.

chapter 1 (General overview and motivation)

• Shankar Karuppayah, Emmanouil Vasilomanolakis, Steffen Haas,
Max Mühlhäuser, Mathias Fischer: BoobyTrap: On Autonomously
Detecting and Characterizing Crawlers in P2P Botnets. CISS@ICC
2016, IEEE [75]

• Emmanouil Vasilomanolakis, Jörg Daubert, Manisha Luthra, Van-
gelis Gazis, Alexander Wiesmaier, Panagiotis Kikiras: On the
security and privacy of Internet of Things architectures and sys-
tems. SIoT@ESORICS 2015 [170]

• Vangelis Gazis, Manuel Görtz, Marco Huber, Alessandro Leonardi,
Kostas Mathioudakis, Alexander Wiesmaier, Florian Zeiger, Em-
manouil Vasilomanolakis: A survey of technologies for the Inter-
net of things. IWCMC 2015: 1090-1095 [61]

• Vangelis Gazis, Carlos Garcia Cordero, Emmanouil Vasilomanolakis,
Panayotis Kikiras, Alex Wiesmaier: Security Perspectives for Col-
laborative Data Acquisition in the Internet of Things. SaSeIoT
2014, Springer LNCS 151: 271-282 [60]

chapter 4

• Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser,
Mathias Fischer: Taxonomy and Survey of Collaborative Intru-
sion Detection. ACM Comput. Surv. 47(4): 55 (2015) [172]

• Emmanouil Vasilomanolakis, Mathias Fischer, Max Mühlhäuser,
Peter Ebinger, Panayotis Kikiras, Sebastian Schmerl: Collabora-
tive Intrusion Detection in Smart Energy Grids. ICS-CSR 2013:
97-100 [167]

10 introduction

chapter 5

• Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero,
Max Mühlhäuser: Multi-stage Attack Detection and Signature
Generation with ICS Honeypots. IEEE/IFIP DISSECT 2016 [177]

• Emmanouil Vasilomanolakis, Shreyas Srinivasa, Max Mühlhäuser:
Did you really hack a nuclear power plant? An industrial con-
trol mobile honeypot. IEEE CNS 2015: 729-730 [174]

• Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser,
Mathias Fischer: HosTaGe: a Mobile Honeypot for Collaborative
Defense. ACM SIN 2014: 330-334 [169]

• Emmanouil Vasilomanolakis, Shankar Karuppayah, Mathias Fis-
cher, Max Mühlhäuser, Mihai Plasoianu, Lars Pandikow, Wulf
Pfeiffer: This network is infected: HosTaGe - a low-interaction
honeypot for mobile devices. SPSM@CCS 2013: 43-48 [168]

chapter 6

• Emmanouil Vasilomanolakis, Shankar Karuppayah, Panayotis Kiki-
ras, Max Mühlhäuser: A honeypot-driven cyber incident mon-
itor: lessons learned and steps ahead. ACM SIN 2015: 158-164

[171]

chapter 7

• Emmanouil Vasilomanolakis, Carlos Garcia Cordero, Nikolay Mi-
lanov, Max Mühlhäuser: Towards the creation of synthetic, yet
realistic, intrusion detection datasets. IEEE/IFIP DISSECT 2016

[176] (Best paper award)

• Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Nikolay Mi-
lanov, Christian Koch, David Hausheer, Max Mühlhäuser: ID2T:
A DIY dataset creation toolkit for Intrusion Detection Systems.
IEEE CNS 2015: 739-740 [29]

chapter 8

• Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Max Mühlhäuser,
Mathias Fischer: Community-based Collaborative Intrusion De-
tection. ATCS@SecureComm 2015: 665-681 [30]

chapter 9

• Emmanouil Vasilomanolakis, Matthias Kruegl, Carlos Garcia Cordero,
Max Mühlhäuser, Mathias Fischer: SkipMon: a Locality-Aware
Collaborative Intrusion Detection System. IEEE IPCCC 2015 [173]

1.4 thesis outline 11

chapter 10

• Emmanouil Vasilomanolakis, Michael Stahn, Carlos Garcia Cordero,
Max Mühlhäuser: Probe-response attacks on collaborative in-
trusion detection systems: Effectiveness and countermeasures.
IEEE CNS 2015: 699-700 [175]

• Emmanouil Vasilomanolakis, Michael Stahn, Carlos Garcia Cordero,
Max Mühlhäuser: On Probe-Response Attacks in Collaborative
Intrusion Detection Systems. IEEE CNS 2016 (to appear) [178]

thesis outline

The thesis consists of a total of eleven chapters and is logically split into
four parts, namely the preface, the alert data generation, the collaborative
intrusion detection and lastly the epilogue. A detailed overview of the
structure of the dissertation is given in the following.

• First, Chapter 2 provides the reader with the necessary back-
ground in the areas of IDSs, honeypots and on the existing eval-
uation techniques for IDSs.

• Similarly, Chapter 3 acts as an introduction into the topic of col-
laborative intrusion detection as well as on the available attacks
on CIDSs.

• In Chapter 4, the thesis proposes a novel taxonomy for CIDSs

and subsequently discusses the state of the art in a comprehen-
sive manner.

• With Chapter 5, the dissertation enters its second part that is
related to alert data generation techniques and mechanisms. In
particular, the chapter introduces HosTaGe a novel mobile hon-
eypot that emphasizes on the detection of sophisticated attacks
in a plethora of scenarios.

• Moreover, Chapter 6 discusses TraCINg a cyber incident monitor
that makes use of sensors, e.g., HosTaGe honeypots, along with
a discussion of the results of a long period of deployment.

• In Chapter 7, the thesis discusses in more detail the topic of
intrusion detection systems and algorithms evaluation. For this
it proposes ID2T a toolkit for the generation of synthetic, yet
realist, intrusion detection datasets.

• With Chapter 8, the dissertation enters the core topics of collab-
orative intrusion detection. In particular the chapter proposes
the concept of communities of collaborative sensors and respec-
tive algorithms for their creation.

12 introduction

• Furthermore, Chapter 9, builds on the basis of the communities
concept and introduces SkipMon a fully distributed CIDS that
offers novel properties in the field of collaborative intrusion de-
tection.

• Chapter 10 deals with the topic of Probe Response Attacks (PRAs)
and provides several contributions in their development, detec-
tion and mitigation.

• Finally, Chapter 11 concludes this dissertation and provides in-
sights of possible future work in the areas of alert data genera-
tion and collaborative intrusion detection.

Readers that are familiar with the topics of IDSs and/or CIDSs can
choose to skip Chapters 2 and 3 respectively. Nevertheless, the au-
thor encourages the study of Chapter 4 as the various introduced
terms and concepts are utilized throughout the whole thesis. The
two parts of the dissertation, namely alert data creation and collabo-
rative intrusion detection, are mostly autonomous and self-contained.
In this sense readers that are specifically interested in only one of
these can skip directly to the corresponding part. However, intercon-
nections between chapters of different parts do exist; for instance, the
introduction of TraCINg in Chapter 6 might assist the reader to fully
comprehend Chapter 10 and so forth.

2
B A C K G R O U N D

This chapter is intended for providing the reader with an introduc-
tion and background knowledge of various topics that will be further
discussed in the rest of the thesis. Section 2.1 discusses Intrusion De-
tection Systems (IDSs), a central topic of this thesis, along with some
initial classifications and definitions with regard to them. Section 2.2
deals with honeypots, i.e., an additional detection mechanism that
can significantly improve existing intrusion detection mechanisms.
Lastly, Section 2.3 deals with the topic of evaluating IDSs with an em-
phasis on corresponding datasets as well as on tools and mechanisms
for creating such datasets. As it will become evident in the course of
this thesis, the latter topic of IDS-specific evaluation methods remains
a big challenge in the respective research field.

13

14 background

intrusion detection systems (idss)

Besides implementing software and designing hardware to be
as secure as possible, it is inevitable that IT systems must be
continuously monitored, to ensure their correct functioning,

for any kind of anomalies or for signs of intrusions and attacks. Thus,
the monitoring process provides an additional line of defense for any
kind of (critical) network infrastructure and IT system. Such a task is
usually taken over by Intrusion Detection Systems (IDSs) [112, 9].

Classifications and definitions

An IDS monitors a host or a network and analyzes it for signs of in-
trusions manifesting malicious behavior or security policy violations.
Thus, its goal is the detection of any attempt to compromise the con-
fidentiality, integrity, availability of information, or simply to bypass
the security mechanisms of a computer or network [12]. The follow-
ing section presents the most common classifications and definitions
for IDSs and briefly summarizes the related work in anomaly detec-
tion algorithms.

Deployment position

In regard to the position of their deployment, IDSs can be divided
into either host-based or network-based IDSs [72, 87]. Host-based IDSs

analyze events and the behavior of users on the granularity of single
devices. This allows collecting detailed information, but introduces
additional computational overhead that can affect the overall perfor-
mance of the monitored system. Moreover, this requires a deployment
of IDSs on all devices to be protected. In contrast, network-based IDSs

can protect several devices or even entire networks at once, as they
monitor only network traffic. More recent work in IDSs also intro-
duced systems that move beyond the aforementioned binary classi-
fication. Such work includes proposals towards wireless-based IDSs

[20], network behavior analysis, mixed IDSs [89, 156] and even cloud-
based approaches [114].

Detection mechanisms

IDSs can be further categorized according to their deployed detec-
tion mechanisms into signature-based (or misuse-based) and anomaly-
based1.

signature-based detection Signature-based IDSs search for
signatures of known attacks and detect their occurrence in the net-

1 Additional classes, e.g., stateful protocol analysis [89], can be considered part of the
anomaly class.

2.1 intrusion detection systems (idss) 15

work. Such a detection mechanism, however, implies the existence of
signatures and therefore is not suitable for identifying novel adversar-
ial behavior. Nevertheless, such IDSs are very commonly utilized for
the monitoring of small to medium sized operational networks due
to their high precision. Well known examples of such signature-based
IDSs include Snort [135] and Suricata [3].

anomaly-based detection Anomaly-based IDSs attempt to ini-
tially learn the normal system state and afterwards define any devi-
ating behavior as an intrusion [9, 25]. In contrast to a signature-based
detection, an anomaly-based detection can also detect unknown at-
tacks. However, usually this comes at the cost of a high false positive
rate, while a signature-based detection usually results in more false
negatives. The following description of related work with an empha-
sis on anomaly-based detection in categorical data and rule deduction
techniques serves as an introduction towards the work described in
Chapter 8.

Discovering anomalies in categorical data is of particular interest to
anomaly-based IDSs as they heavily rely on the analysis of categorical
attributes [25]. For example, IP addresses are normally represented
as categorical rather than numerical attributes. This is an important
issue to take into account as not every machine learning technique
is able to work well with network data. There are, however, many
machine learning algorithms that are well suited for this task.

Mahoney and Chan published the Packet Header Anomaly Detec-
tor (PHAD) algorithm [103]. It focuses on finding rules describing the
normal appearance of the Ethernet, IP, TCP, UDP, and ICMP protocols.
Detection of anomalies in this context is limited to packets not adher-
ing to one of the learned protocols. The algorithm evolved, by taking
into account the application layer of the OSI model, into [100], which
uses features extracted from TCP streams to model user defined con-
ditional rules. Learning Rules for Anomaly Detection (LERAD) [103],
finds rules on its own through a stochastic sampling algorithm. In-
stead of modeling hand picked rules, LERAD is capable of finding
a subset of effective conditional rules that describe normal network
data. Due to its latter property, LERAD will be utilized as a detection
engine in one of the proposed collaborative intrusion detection con-
cepts in the course of this thesis (see Chapter 8.3.2).

Passive and active monitoring

Traditionally, IDSs are considered as passive monitoring. Even though
there are cases, e.g., systems that also act as Intrusion Prevention Sys-
tems (IPSs), on which IDS do not have a completely passive operation,
overall the detection process is based on passive components. Never-
theless, the process of monitoring of networks can additionally em-

16 background

ploy more active components such as honeypots (see following sec-
tion). This thesis will be utilizing both passive (e.g., in Chapter 8) and
active (e.g., in Chapter 5) components for the monitoring process.

honeypots

Honeypots are systems, whose value lies in being probed, attacked,
or compromised [151], and they can provide a more active line of
defense compared to passive intrusion detection. As honeypots do
not have any production value, any interaction with them, i.e., any
incoming communication, is by definition considered an attack [150].
As such, they exhibit a low false positive ratio and their usage can
assist in increasing the overall detection accuracy of a IDS [72]. In ad-
dition, many honeypots exhibit the ability of automatically capturing
the payload of an attack. Hence, they are able to provide additional
knowledge regarding recent malware techniques and trends. Further-
more, the utilization of honeypots can assist in reducing the overall
attack surface of a network and can additionally serve as the basis for
studying the behavior of the adversaries.

This section provides the reader with a brief description of the most
common classification with regard to honeypots (i.e., the interaction
level). Moreover, a discussion of the state of the art in honeypots is
given that serves as a basis for the comprehension of the thesis’ pro-
posals in Chapter 5.

interaction level Honeypots can be classified with respect to
the level of interaction that is offered to the attacker, into low and
high interaction2. On the one hand, a high-interaction honeypot is es-
sentially a full functional system that exhibits certain vulnerabilities
and is closely monitored. Hence, such honeypots need to be carefully
safeguarded to avoid a full compromise, which results in an over-
whelming effort from the defenders’ perspective. On the other hand,
a low-interaction honeypot only simulates network operations, usu-
ally at the TCP/IP stack. This thesis focuses solely on low-interaction
honeypots for a number of reasons. First, they require low resources
which makes them suitable for the deployment into constrained de-
vices, e.g., mobile phones. Moreover, this class of honeypots can be
efficiently designed such that it is possible to subsequently include
emulation support for new protocols. In this context, the reader may
refer to Chapter 5, which presents contributions in both the areas of
mobile honeypots and ICSs, towards the detection of attacks and the
generation of alert data.

2 This thesis considers the so-called medium interaction class as a sub-class of the low-
interaction since by definition honeypots that claim to be part of this category, e.g.,
Kippo, still emulate protocols.

2.2 honeypots 17

alert signature generation Recently, there have been vari-
ous proposals in the area of alert signature generation that make use
of honeypots (e.g., [80, 162, 78]). For instance, HoneyComb [80] is a
system that makes use of the honeyd honeypot [127] to generate alert
signatures. It has the advantage of only using honeypot network traf-
fic and thus reducing false positives. However, as a result of utilizing
honeyd, only high level TCP or UDP information can be examined,
making it unsuitable for payload-level analysis.

usability of honeypots Most honeypot proposals are strictly
focused on implementing novel detection methods. Hence, user-centric
solutions are not the primary focus and as such the main intended
user class is security professionals and not ordinary users. However,
the idea and the benefits of creating more user-friendly honeypots is
getting more attention lately. In [5, 6] the "Honey@home" is proposed,
where organizations and individuals can participate by deploying a
honeypot that reports to a large-scale centralized honeypot monitor-
ing system. Nevertheless, this approach does not include mobile de-
vices and there are no clear benefits for the end-user to participate.

With regard to further related work, honeypots have been stud-
ied extensively over the recent years [151]. In particular, the low-
interaction class exhibits a variety of proposals and implementations,
e.g., [10, 127, 140, 123, 63]. In the following, this chapter briefly dis-
cusses related work in low-interaction honeypots with a focus on mo-
bile systems. In addition, an introduction to honeypots that empha-
size on ICSs protocols is given. This discussion serves as background
for the work described in Chapter 5.

Mobile Honeypots

Early work that considered honeypots in the context of mobile de-
vices focused only on Bluetooth communications [56, 198]. However,
the recent advances on mobile devices, their interconnectivity as well
as their popularity created a whole new ecosystem for honeypot re-
searchers. Existing work in this direction, e.g., [116, 185, 90, 186], usu-
ally focuses on the detection of mobile-specific malware. Specifically,
Mulliner et al. were the first to discuss the idea of a honeypot for
smartphones, by providing initial ideas, challenges and an architec-
ture for their proposed system [116]. Moreover, in [185, 186] Wahlisch
et al. provided insights from the deployment of a honeypot on a
mobile network. However, their honeypot is not specifically crafted
for mobile devices, but rather deployed existing Linux-based desktop
honeypots in mobile networks. Furthermore, in [90] the idea of no-
madic honeypots has been introduced. The authors focus on mobile-
specific attacks and also require their system to collect a large amount
of personal information.

18 background

Honeypots for ICSs

In their recent work, Minn et al. [109] proposed IoTPOT, a honeypot
that emphasizes on IoT devices by emulating the Telnet protocol. Their
results show an increase of attacks on Telnet that target IoT devices,
which, as discussed in Chapter 6, also corresponds to our findings
[171]. However, their focus is limited only into Telnet-based attacks
(and different CPU architectures). Conpot [134] is another low inter-
action honeypot that focuses on emulating server side ICSs. Conpot
was one of the first honeypots detecting ICS network attacks and is
considered the state-of-the-art in this area. Conpot has a few disad-
vantages however; first, it does not support the emulation of Telnet,
and the information that is logged, e.g., for Modbus attacks, is not
always sufficient for an in-depth analysis of an attack.

Summary

There are many research challenges and gaps in the area of mo-
bile honeypots and in systems that aim to monitor ICS networks.
Furthermore, honeypots are not intended as a stand alone security
mechanism, but rather as a complementary approach to improve IDSs.
Hence, research in the topic of honeypot-based signature generation
(that can be afterwards utilized by IDSs) is required. Chapter 5 will
introduce a novel mobile low-interaction honeypot that combines the
field of alert signature generation with the ability to monitor ICS net-
works.

evaluating idss

The evaluation of intrusion detection algorithms and systems is a
topic that exhibits, as it will be shown later in this section, a plethora
of challenges for the scientific community. To evaluate their work, re-
searchers can make use of existing datasets, develop their own or uti-
lize specialized tools that are able to generate corresponding datasets.
This section discusses the state of the art in this area. In this sense
the current section additionally acts as motivation for the second part
of this dissertation; the problems and research gaps described in the
following suggest the need for novel mechanisms for generating real
world alert data (cf. Chapters 5 and 6) as well as for tools that are able
to generate realistic datasets for IDSs (cf. Chapter 7).

IDS-Specific Datasets

A number of synthetic and non-synthetic datasets have been pub-
lished over the years with the purpose of being utilized for the eval-
uation of intrusion detection algorithms and systems [92, 52, 139, 79].

2.3 evaluating idss 19

However, there are two major problems with most existing datasets.
First, many of them have been created over a decade ago and thus
do not exhibit realistic network traffic nor contain up to date cyber-
attacks. Furthermore, as a result of the synthetic creation of the datasets,
the majority of these include undesired artifacts that can significantly
reduce their usability.

The DARPA 1999 dataset [92] is an illustrative example of both the
aforementioned problems. Being generated more than 15 years ago, it
contains network traffic and attacks that are antiquated. Moreover, a
lot of criticism has been made with regard to undesired artifacts dur-
ing the generation of the attacks [106]. For instance, Mahoney and
Chan [101] discovered inconsistencies in the TTL values of malicious
and non-malicious traffic. Due to such inconsistencies the evaluation
results of various anomaly-based detection algorithms might be mis-
interpreted as a result of them identifying the artifacts, rather than the
actual attacks, that are present in a dataset. Nevertheless, it should be
noted that the dataset is still being utilized for the evaluation of vari-
ous recent ensemble-based approaches (e.g., [121, 16]).

Other examples of datasets include [1, 31, 161] and [52]. Neverthe-
less, all of these datasets exhibit problems such as the absence of flow
data and ground truth knowledge, availability issues, etc. [79]. For
instance, the MAWI dataset [52] consists of a very large number of
modern network captures and can be, indeed, particularly useful for
various research purposes but it does not contain any ground truth
nor packet payloads.

Dynamic Creation of Datasets

Beyond single, static datasets, research has been conducted in the
area of generating datasets dynamically, e.g., [144, 17]. For instance,
Shiravi et al. [144] proposed a systematic approach for generating
datasets by making use of profiles. Even though this work seems
promising, the results are only available on-demand. Moreover, the
authors do not distribute their toolkit but rather a dataset as an ex-
ample output of their approach.

The Flow-Level Anomaly Modeling Engine (FLAME) [17] tool is a
promising work in this area. It works by taking as an input serial
streams of flows and injecting hand-crafted network anomalies. As
the name implies, this tool manipulates network flows. While this is
useful in many circumstances, it also comes with a number of restric-
tions. First, datasets generated by FLAME cannot be utilized for eval-
uating intrusion detection algorithms in an agnostic manner; rather,
they are limited to algorithms that use network flows. Lastly, FLAME,
due to the fact that it is only working with network flows, is limited
to the injection of attacks with flow footprints.

20 background

Summary

The topic of evaluating intrusion detection systems and algorithms
exhibits various research gaps. Existing datasets are unable to pro-
vide a commonly accepted evaluation method due to their aforemen-
tioned disadvantages; they either contain undesired artifacts or they
do not provide an holistic and up to date cover of cyber-attacks. Sim-
ilarly, the related work for dynamically generating datasets has not
been able to provide an holistic approach for such a task. Chapter 7

touches the topic of generating synthetic, yet realistic, intrusion detec-
tion datasets and attempts to address some of the problems identified
in this section.

conclusion

This chapter introduced the reader to a number of fundamental terms,
definitions and related work. In more details, the introduction to
IDSs served as background for the understanding of the next chapter,
which tackles the topic of collaborative intrusion detection. Section’s
2.2 introduction to honeypots, motivated their utilization both for the
detection of attacks but also as an additional mechanism for alert
data generation (see Part ii of the dissertation). Moreover, this section
served as a discussion of the state of the art on honeypots with a focus
on the ones intended for mobile systems and ICS environments. The
identified research gaps are the basis on which Chapter 5 will built
upon. The last part of this chapter discussed the topic of evaluating
intrusion detection algorithms and systems. This topic is of high im-
portance for any relevant future research, as no commonly accepted,
generic and publicly available evaluation method exists. Chapter 7

copes with these challenges by proposing an approach for generat-
ing synthetic intrusion detection datasets. In a glance, the thesis at
hand contributes in the fields of alert data generation and dataset cre-
ation in a threefold manner as depicted in Part ii and specifically in
Chapters 5,6,7.

3
C O L L A B O R AT I V E I N T R U S I O N D E T E C T I O N

This chapter is intended as an introduction to Collaborative IDSs
(CIDSs) and to corresponding attacks on them. On the basis of the
knowledge gained from the previous chapter it is now possible to
dive into the topic of collaborative intrusion detection. First, Section
3.1 provides the reader with the basic background knowledge and
motivation with regard to CIDSs. Section 3.2 proposes a number of
functional and non-functional requirements towards the creation of
a CIDS. These will be the basis for the evaluation of the state of the
art (see Chapter 4) and for the development of the proposed CIDS in
Chapter 9. Lastly, Section 3.3 discusses all aspects of attacks on CIDSs

and concludes by connecting them with the aforementioned require-
ments. The thesis deals with such attacks on CIDSs in Chapter 10.

21

22 collaborative intrusion detection

introduction

The first IDSs have been mostly isolated single instances for mon-
itoring a single system or a single network by carrying out
local analysis for attacks. Hence, in between instances of such

a stand-alone IDS, no communication and interaction takes place. Ob-
viously, such a solution will not detect sophisticated and highly dis-
tributed attacks. That is, isolated IDSs will not be able to establish
connections between malicious events occurring at different network
places at the same time. Nowadays, with the increase in the size of
corporate networks, malicious entities may attempt to spread their
attacks so that their overall behavior can remain undetected. On the
contrary, when collaboration of different IDSs would have been feasi-
ble, it would also be possible to perform alert data correlation and
aggregation to detect adversaries that distribute their attacks all over
the network.

Thus, for the protection of large networks and large IT ecosystems,
Collaborative IDSs (CIDSs) emerged. CIDSs consist of several monitors
that act as sensors and collect data. CIDSs can also assist to balance the
load of IDSs in the cases of large-scale networks; isolated IDSs might
not be able to efficiently monitor a big network due to the amount
of traffic they would have to oversee. A CIDS can balance this task
by distributing the effort to its monitors. Essentially, CIDSs enforce
cooperation among different monitors and therefore they are more
scalable than stand-alone IDSs. Besides improving the scalability and
the detection accuracy of a monitored network, CIDSs can also signifi-
cantly reduce the complex tasks of security administrators [65].

CIDSs usually contain one or several analysis units carrying out the
actual intrusion detection on the data obtained from the monitors.
Depending on the specifics of a CIDS, monitors and analysis units can
be also co-located. If not indicated otherwise and for the remainder of
this thesis, it is assumed that the term monitoring sensor1 encompasses
both a monitor and analysis unit.

CIDS can be roughly classified according to their communication
architecture, as shown in Figure 4, into centralized, decentralized, and
distributed CIDS:

• Centralized CIDSs consist of several monitors that observe the be-
havior of their respective host or the network traffic passing
by. These monitors share their data with a central analysis unit.
This data can be either alerts as a result of a local detection or
extracted data from the local network traffic. Hence, the anal-
ysis unit is either applying alert correlation algorithms on top
of received alerts or standard detection algorithms on top of
the received network traffic data. Centralized CIDSs do not scale

1 Note that, for the sake of clarity, this thesis will be using the terms, monitoring sensor
and monitor interchangeably.

3.2 requirements 23

MA MA

MA

MA

MA MA

M M M

A

A
M M

M

M

M M
A A

Figure 4: Overview of centralized, decentralized, and distributed IDS archi-
tectures that consist of monitors (M) and analysis units (A).

with the increasing size of the system that needs to be protected.
Moreover, the central analysis unit represents a performance
bottleneck and a Single Point of Failure (SPoF).

• Decentralized (or hierarchical) CIDSs usually make use of a hierar-
chical structure of monitoring points or multiple self-contained
IDS deployments. Through this structure, they overcome the per-
formance bottleneck of centralized CIDSs as they employ prepro-
cessing and correlation of the monitored data within the hierar-
chy until the data converges to a central analysis unit on top.

• Distributed CIDSs share the tasks of the central analysis unit equally
among all monitors, so that each monitor is also an analysis unit.
Distributed CIDSs usually employ a P2P architecture, in which
monitored data is correlated, aggregated, and analyzed in a
completely distributed manner among the monitors.

Despite the fact that a lot of work has been done in surveying and
classifying IDSs [38, 9, 25, 12], only a few focus specifically on CIDSs

and their architecture [21, 196]. In particular, Zhou et al. [196] pre-
sented a study of CIDSs and focused mainly on the system architec-
tures and the correlation of alert data. However, rather than surveying
all related work in the field, Zhou et al. only shortly describe a few
examples of existing CIDS proposals per architecture. This thesis ad-
ditionally contributes in the area of CIDSs by more comprehensively
discussing the state of the art in CIDSs in Chapter 4.

requirements

This section first proposes requirements of CIDSs for deployment in
large networks and IT systems. Thereafter, the chapter discusses at-
tacks on CIDSs and how they affect the requirements towards CIDSs.

The following functional and non-functional requirements for CIDS

were identified in the course of this thesis:

24 collaborative intrusion detection

• High accuracy: Accuracy for IDSs is determined by the percent-
age of successfully detected attacks and the corresponding per-
centage of undetected attacks (false negatives). In addition, the
number of falsely triggered alarms (false positives) also needs to
be taken into account to measure the accuracy of an IDS. An
accurate IDS should minimize both.

• Minimal overhead: Overhead arises in terms of computation and
communication effort. The techniques used to produce, collect, or
correlate intrusion alerts must have a low computational over-
head. In addition, the signaling inside the IDS, e.g., between
monitors, or between monitors and an analysis units, needs to
be as minimal as possible.

• Scalability: Scalability requires that the performance of the IDS

increases linearly with the size of the resources added, so that
networks of arbitrary size can be protected [69]. Therefore, the
IDS should not contain bottlenecks or Single Point of Failures
(SPoFs).

• Resilience: In the presence of failures on internal components
and during attacks, a CIDS should still maintain its availability
and ensure an acceptable accuracy. Hence, a CIDS should not
only be resilient to system malfunctions, external attacks like
Denial of Service (DoS) but also internal attacks from malicious
CIDS components and malicious systems in the protected net-
work/system. For this reason, a CIDS should prevent SPoFs and
should provide graceful degradation and fast restoration mech-
anisms to counter failures and attacks.

• Privacy protection: In a collaborative environment, exchanged
alerts may include sensitive information that needs to be pro-
tected and should not be shared or disclosed with all com-
ponents in a CIDS. This is particularly important for CIDS de-
ployments that share data across domains, which require pri-
vacy protection for the involved users, companies, and network
providers.

• Self-configuration is the ability of the system to automatically
adjust itself, without the intervention of an administrator. In
contrast to systems that require manual configuration, this pro-
vides the ability of constructing less error-prone systems.

• Interoperability is the ability of the system to inter-operate with
instances of the same system deployed in other networks, and
also across different IDS implementations. For instance, this can
be achieved, via the utilization of standardized formats such as
the Intrusion Detection Message Exchange Format (IDMEF).

3.3 attacks on cidss 25

• Domain awareness: A real world deployment of a CIDS might
be constrained by the existence of security policies. For instance,
such a policy might forbid the communication of different sub-
networks. As a result, CIDS sensors would not be able to prop-
erly communicate. In this context, domain awareness refers to
the ability of the CIDS to, on-demand, constrain the dissemina-
tion of alert data to certain sub-domains of the monitored net-
work.

attacks on cidss

CIDSs are essentially IT systems and thus they can be targets of at-
tacks. Therefore, a comprehensive treatment of attacks has to include
attacks on the CIDS components themselves.

Attacks on CIDSs can be classified into internal and external, based
on the operating position of the attacker. External attacks refer to ad-
versarial actions that originate from outside the monitored network.
In an external attack, the adversary may try to detect the presence of
a CIDS, launch evasion attacks (see Section 3.3.1.2), or attack specific
components of the IDS directly, e.g., degrading its service availability
via a DDoS attack [153, 111]. Internal attacks refer to malicious be-
havior originated from within the monitored network; either a host
within the monitored network (network level) or a monitor that is
part of the CIDS (monitor level) has been compromised. For example,
via such an attack position, the malicious user can disclosure sensitive
information (e.g., disclosure the CIDS’s monitors) or aim on corrupt
the alerts that are distributed between the CIDS monitors.

Protected
Network

External Attacker

M M

M M

Malicious Monitor

M

Malicious Insider Regular User

DoS

Covert Channel

Rogue Alerts Rogue Alerts

External
Attacks

Network
Level
Attacks

Monitor
Level
Attacks

Figure 5: Possible network positions of attackers. M represents the different
monitoring points of the CIDS.

The different positions of the adversary with respect to the afore-
mentioned classifications are shown in Figure 5. This chapter consid-
ers three different network positions: an external attacker, e.g., carrying

26 collaborative intrusion detection

out DDoS attacks, a malicious insider, e.g., performing covert channel
attacks, and a malicious monitoring point, e.g., distributing fake alerts.

Figure 6 depicts an overview of attacks that can influence a CIDS

with respect to the aforementioned internal and external level classifi-
cation. The remaining of this section follows the detailed classification
of Figure 6. External attacks can be further divided into the disclosure
and evasion subclasses, while internal attacks are branched with re-
spect to the position of the adversary to monitor-level and host-level.

Attacks

External

Disclosure

Probe
Response

Evasion

Signature

Obfuscation

Packet
Splitting

Overlapping
Fragments

False Positive
Flooding

Anomaly

Training Data
Normality

Model

Mimicry

Polymorphic

Blending

Internal

Monitor

Disclosure

Infiltration

Collusion

Fake Alerts

Host

Covert
Channel

Figure 6: Overview of different attacks for CIDSs.

External attacks

External attacks have their origin outside the monitored network and
can be classified into CIDS disclosure and evasion attacks. Disclosure
attacks aim on detecting the presence of CIDS monitoring points in the
network as preparation for subsequent evasion attacks to bypass the
CIDS.

Disclosure Attacks

Disclosure attacks provide the attacker the means of identifying the
monitors of a CIDS. In the following, this section briefly discusses the
related work for such attacks. The reader can also refer to Chapter 10

which improves the state of the art as well as the respective mitigation
mechanisms.

In [143], a method is presented for the discovery of passive moni-
tors that publish their results publicly via the Internet. The assump-
tion is that these results, e.g., periodically updated graphs that vi-

3.3 attacks on cidss 27

sualize the top attacked ports, provide enough information to trace
the location of monitors. A similar but more active approach from
Shmatikov et al. also assumes public CIDS output and introduces the
concept of Probe Response Attacks (PRAs) [145]. The attacker carries out
specifically adapted attacks, so that the produced alerts of the CIDS

contain a unique marker. These markers are then used to identify
monitoring points. In [13], passive sensor detection algorithms are
presented that are based on PRAs.

Furthermore, Rajab et al. [129] describe techniques for live pop-
ulation sampling and methods for building sophisticated malware.
In this case, the malware would try to spread intelligently over the
Internet by firstly targeting only active IP space addresses and also
by avoiding the disclosure by CIDSs. The first part is done on-the-fly
via sampling techniques, in the different IP layers, accompanied by
sending messages, e.g., ICMP packets. For avoiding disclosure, the
assumption is that there is an increased probability that malware also
attacks passive CIDS monitors while continuously choosing random
IP addresses for further propagation. To prevent this, Rajab et al. pro-
pose the creation of malware with knowledge about the IP address
ranges used by passive IDS monitors. Thus, such malware utilizes of-
fline information regarding monitors that has been acquired via PRAs.
In addition, the authors discuss the idea of malware that actively uses
PRAs during their infection phase.

Disclosure techniques assume some kind of feedback path from
the CIDS to the attacker, e.g., attack results that are visible on a public
website. Hence, without such a feedback path, there are no methods
for an adversary to successfully disclose monitoring points of a CIDSs.
This thesis deals with PRAs by providing significant improvements to
these attacks and their mitigation. For this, the reader can refer to
Chapter 10.

Evasion Attacks

An evasion attack attempts to circumvent an IDS, so that no alert is
triggered or to minimize the number of raised alerts. Depending on
the applied detection method, a multitude of techniques are available
for performing such an attack. With respect to the two major detec-
tion classes, evasion attacks can be differentiated into signature and
anomaly based.

Signature-based evasion attacks try to evade an IDS that makes use
of signatures for its attack detection. For that, an attack is modified,
so that it does not match the known signature anymore. This requires
to change the attack slightly, e.g., the order of events and packet pay-
loads. Anomaly-based evasion attacks mainly focus on ways to mas-
querade an attack as legitimate and thus normal behavior.

28 collaborative intrusion detection

signature-based evasion This class of evasion attacks usually
attempts to take advantage of the static nature of signatures and the
fact that even a small change (in a signature) can lead an IDSs to an
oversight.

1. Attack obfuscation is one of the standard methods for an attacker
to evade a signature-based IDS. The way to accomplish this is
to transform its code into a semantically equivalent one that
cannot be detected, as its signature is different compared to the
origin code [26]. Depending on the level of mutation, an attacker
may use either payload mutation where malicious payload pack-
ets are mutated to change their signature, or shellcode mutation in
which a shellcode is obfuscated with polymorphic techniques.
Several penetration testing tools support this feature, e.g., the
Metasploit Framework2.

2. Packet splitting is another evasion method [26] which exploits
the fact that different operating systems handle fragmented pack-
ets distinctively. Hence, when the IDS cannot successfully re-
assemble fragmented IP packets or TCP segments, false nega-
tives can be generated.

3. Overlapping fragments (or duplicate insertion attack) is a similar
attack which is based thereupon that different operating sys-
tems handle overlapping IP fragments differently. When the IDS

reassembles packets it may obtains different data than the target
system of the attack, so that the attack is not detected.

4. False positive flooding can be finally launched to conceal an attack
that is carried out in parallel., in the case when the signatures
used by an IDS are known. This requires to create a large number
of false positives at the IDS, e.g., via available attacking tools like
Inundator3, rule2alert 4, or idswakeup5.

anomaly-based evasion Anomaly-based detection techniques
[25] create a model of the normal traffic, and consider any deviation
as a possible attack (see Chapter 2.1). In most cases a training phase is
required to determine the normal behavior. As mentioned in Chapter
2 and in contrast to signature-based detection, the main advantage of
using anomaly detection is the ability to detect unknown attacks [9].
However, this usually comes at the cost of an increased false positive
ratio. There are two possible ways for an attacker to evade an anomaly
detection system. The attacker can either modify what is considered
to be normal (training data attack) or the attack can be transformed to
appear as normal behavior (normality model attack) [159].

2 http://www.metasploit.com
3 http://inundator.sourceforge.net
4 http://code.google.com/p/rule2alert
5 http://www.hsc.fr/ressources/outils/idswakeup

3.3 attacks on cidss 29

1. Injecting training data attack refers to the case where an adver-
sary is able to inject intrusive behavior during the training pe-
riod of an anomaly-based IDS detection algorithm. Subsequently,
the system will not be able to distinguish such an attack from
normal behavior in the future. Moreover, as the overall behav-
ior changes over time, periodic training, while the system is
active, is required [38]. This can be exploited by attackers to in-
corporate intrusive behavior patterns to the training data of the
anomaly detection.

2. Mimicry attacks, a subclass of anomaly-based evasion attacks,
was introduced by Wagner et al. [184]. The authors introduce
evasion techniques that are capable of bypassing anomaly-based
IDS. This means that an attack is transformed in a way that
seems legitimate by imitating normal activity. Tan et al. also con-
firmed that mimicry attacks are a real threat for anomaly detec-
tion by using modified real-world exploits to evade IDSs [159].
The main idea behind the aforementioned attacks is to insert
dummy system calls into the attack sequence, so that the final
overall system call sequence looks normal. Moreover, Kruegel et
al. [81] expanded and automated this class of attacks, resulting
in the successful evasion of anomaly-based IDSs.

3. Polymorphic blending attacks, which are similar to mimicry at-
tacks, were introduced in [51]. The assumption behind such an
attack is that only a small part of normal traffic can be analyzed
by an anomaly detection algorithm, because of difficulties aris-
ing with the modeling of complex systems and also due to per-
formance overhead issues. To exploit this, Fogla et al. propose a
combination of mimicry techniques with polymorphism, which
introduce the ability of changing the appearance of an attack
with every instance [51]. For that, the attacker first creates a pro-
file of what is supposed to be normal traffic by the IDS and then
encrypts the attack body to blend it with the learned profile.
Finally, a polymorphic decryptor is generated, to decrypt the at-
tack body when needed. Authors demonstrate the feasibility of
the proposed attack via attacking the PAYL anomaly-based IDS,
which is specialized in detecting polymorphic attacks [188, 187].

Internal attacks

Internal attacks refer to malicious behavior originated from within
the monitored network. An insider can be classified as either a mali-
cious monitor that is part of the CIDS monitoring topology (monitoring
level) or a malicious host inside the monitored network (see Figure 5).

30 collaborative intrusion detection

Compromised host

Once a host is compromised within the protected network, a covert
channel can be set up between this host and an external entity. A
covert channel tries to hide the very existence of any communication
[85, 191] by using a channel that is usually not intended for communi-
cation, e.g., timing information in between packets or unused bits in
the IP header. Covert channels presume a compromised host within
the protected network, and depending on the specific channel used,
they can theoretically evade any CIDS.

Compromised monitor

It gets even worse, when the attacker has compromised a compo-
nent of the CIDS, e.g., a CIDS monitor, as this enables the adversary
to launch subsequent attacks: when the attacker has successfully in-
filtrated a CIDS, other monitoring sensors can be disclosed. Further-
more, a malicious user can compromise additional CIDS components
or exploit vulnerabilities in the CIDS protocol to let compromised com-
ponents take over more important positions or functions in the CIDS

overlay, e.g., by producing fake alerts, accusing other monitors to be
compromised or by conducting supporting DoS attacks on other sen-
sors. In addition, multiple compromised monitoring sensors can col-
lude to increase the chances of taking down or compromising the
rest of the monitored network [53]. Moreover, on the basis of a com-
promised monitor, the attacker can easily bypass the CIDS and thus
reduce its accuracy by selectively forwarding alerts to other monitors,
e.g., by suppressing alerts for specific attacks.

Recent and more sophisticated attacks attempt to circumvent a
common countermeasure to internal attacks, namely the adoption of
reputation systems [131, 105], e.g., EigenTrust [73]. In such an adop-
tion, each of the monitors establishes a certain trust level based on its
detection behavior or other defined properties. Whenever the trust
level drops below a specified threshold, the monitor is considered
non-trustworthy and specific measures can take place, e.g., blacklist-
ing of the specific monitor. Specifically adapted to CIDSs, Fung et al.
[55] propose a trust management model that is based on Bayesian
probabilities. In more details, when monitoring points distribute their
alert data, they also send request messages to determine the trustwor-
thiness of other monitors. This is achieved by a probabilistic model
whose purpose is to measure the satisfaction level of the received re-
sponse messages. A number of similar trust mechanisms for CIDSs to
cope with insider attacks have been proposed [54, 41, 141, 62].

While the usage of such mechanisms protects the system from
many of the aforementioned attacks, it creates new opportunities for
the attacker. A well known problem with reputation systems is the
exploitation of the system itself when highly trustworthy peer(s) is

3.3 attacks on cidss 31

compromised, which is called a betrayal attack [54]. If the trust value of
the compromised peer is not quickly degraded, the overall accuracy
of the system will be affected. In another variant, a so-called sleeper
attack [18], a malicious peer first behaves benign over time to establish
a certain reputation level before it carries out the actual attack.

The topology of a CIDS might be completely static and pre-configured
or when monitors are added to the system dynamically, a strict access
control for them can be enforced. However, in the highly unlikely case
of a CIDS that is open and allows the dynamic inclusion of additional
monitors, an attacker can launch a sybil attack [40] by adding a mul-
titude of malicious monitors to the system [53]. These can be used
to establish a more detailed view of the CIDS topology and to pre-
pare subsequent attacks, e.g., to degrade the detection accuracy of
the CIDS, to out-vote honest nodes, to perform whitewashing of mali-
cious peers, and to compromise additional monitors. However, such
attacks could be considered rare as most CIDS topologies are usually
rather static and CIDSs may enforce strict authentication mechanisms
for new monitoring sensors.

Discussion

This chapter has described external and internal attacks on CIDSs. Ex-
ternal attacks can disclose the presence of a CIDS and decrease its
detection accuracy by evasion attacks. An attacker who successfully
compromises a host in the protected network can launch a multitude
of additional attacks, e.g., setting up a covert channel to evade the IDS

and thus decreasing its detection accuracy, e.g., to hide an export of
sensitive data. It gets worse, when the attacker compromises a CIDS

monitor, as it allows to bypass the whole CIDS, degrade its detection
accuracy, or in worst-case to bring it down completely.

Internal attacks are more effective when combined with external
ones. Thus, compromised hosts or monitors may provide information
to the outside, which is used to prepare subsequent external attacks.
For instance, a sophisticated attack may include an evasion technique
to compromise a peer inside the monitored network without trigger-
ing any alerts. Afterwards, the adversary could use covert channels
[191] to send sensitive data outside the protected network.

Table 1 summarizes the aforementioned attacks with respect to the
requirements given in Section 3.2. Any type of attack on a CIDS is
also an attack on its main task, namely the detection of attacks on the
protected network and thus an attempt to degrade the detection ac-
curacy of the respective CIDS. Overhead issues could arise through ma-
licious monitors, DoS attacks or even network-based insider attacks.
For instance, an adversary who controls a CIDS monitor can flood the
CIDS network. Scalability is mostly an architectural property and there-

32 collaborative intrusion detection

       

       

       

       

    []   

D
o

m
. A

w
a

r.

External/Disclosure/Probe Response

In
te

ro
p

er
.

Se
lf

-c
o

n
fi

g
.

P
ri

v.
 P

ro
t.

H
ig

h
y

A
cc

.

M
in

. O
ve

rh
.

Sc
a

la
b

ili
ty

R
es

ili
en

ce

External/Evasion/Signatures
External/Evasion/Anomaly

Internal/Monitor
Internal/Host

CIDS Attacks

Table 1: Relationship between Attacks on CIDSs and Requirements: Check
marks 3 indicate a relation between an individual requirement and
IDS attacks, while checkmark symbols in brackets [3] an indirect
relation. Finally, x marks 7 show the absence of any relationship.

fore it is not affected by the aforementioned attacks6. Furthermore, re-
silience is related with most of the CIDS attacks (e.g., internal attacks).
Attacks on the privacy protection of CIDSs are mainly related to mali-
cious monitoring points as the exchanged CIDS alert data may con-
tain sensitive information. For instance, this could be the case when
several organizations use a single and interconnected CIDS. However,
insiders may also, indirectly, affect the privacy of the involved partic-
ipants as they can disclose sensitive data to unauthorized external
parties. The domain awareness property can be affected in the case of
compromised monitors. For example, in such an event the adversary
might attempt to disregard the CIDS protocol and contact network
domains that are considered restricted. Lastly, interoperability and self-
configuration are non-functional requirements and hence do not di-
rectly relate with the aforementioned attacks.

6 However, scalability can be affected by DoS/DDoS attacks, in the context of the system
not being able to support additional monitors during such an attack.

4
TA X O N O M Y A N D S TAT E - O F - T H E - A RT

The previous chapters aimed at supporting the reader by presenting
all the fundamental background work and the necessary definitions
that will be used in the course of the thesis. This chapter provides
with the first original contribution by proposing a novel taxonomy
for collaborative intrusion detection (Section 4.1). The taxonomy is
described in-depth and it is followed by a comprehensive survey and
qualitative comparison of the state of the art (Section 4.2). The current
chapter drives the thesis forward in a twofold manner. First, it pro-
poses a systematic approach for designing a CIDS and also examines
the majority of the related work. Second, the survey of the state of
the art reveals the research challenges that are yet to be addressed.

33

34 taxonomy and state-of-the-art

taxonomy of collaborative intrusion detection

The challenge of fulfilling all requirements put forth in Chapter
3.2, calls for a systematic approach which in turn calls for a
decomposition of concerns. In the process, a number of chal-

lenges arise, e.g., minimizing the exchanged data by maximizing the
detection accuracy, deciding which monitors should exchange infor-
mation, and identifying the most efficient membership management
architecture for the monitors.

To structure the solution space for such a system, a disjunction
of CIDSs into five main building blocks is proposed (see Figure 7).
The suggested separation attempts to create a logical guide, for re-
searchers, which takes into account all major steps that are necessary
for the monitoring and identification of targeted and sophisticated
attacks in large networks.

Local monitoring stands for all the monitor-level detection mecha-
nisms that are deployed in the CIDS (e.g., a honeypot or a signature-
based IDS). The Membership management is related to the task of ensur-
ing the overall connectivity of the monitors that assemble the CIDS.
Moreover, the data dissemination relates to all the mechanisms that the
CIDS is utilizing to exchange alert data in-between different monitor-
ing sensors. Correlation and aggregation can be performed both locally
(in each monitor) but also in the whole CIDS and can significantly
benefit the overall detection accuracy of the system. Lastly, the global
monitoring block refers to the ability of the CIDS to detect attacks as a
result of its internal collaboration and correlation of alert data.

Local Monitoring

Data Correlation & Aggregation

Global Monitoring

Data
Dissemination

Membership
Management

Figure 7: Building blocks for CIDSs.

The aforementioned building blocks lead to a detailed taxonomy
that is proposed in this thesis, as shown in Figure 8. In the following,

4.1 taxonomy of collaborative intrusion detection 35

details are given for each building block and its corresponding design
space.

Local monitoring

Local monitoring in a CIDS can take place either on host or network
level. On the host level, this requires the monitoring of local activities
to identify malicious behavior, which presumes monitoring function-
ality on all hosts of the network. In contrast, by monitoring at the
network level, an entire network can be protected by deploying mon-
itoring points only at strategically selected network locations, e.g.,
close to the ingress and egress routers. Combinations of host and net-
work level monitoring are also feasible and will increase the amount
of monitored data, thus allowing for a more fine-grained attack de-
tection in a CIDS.

Monitoring is classified as either passive or active. Passive monitor-
ing corresponds to scanning local activity or the locally observed net-
work traffic. In active monitoring, honeypots can be used to emulate
the presence of vulnerable systems as promising attack targets. As
they have no productivity use, any interaction with them can be clas-
sified as an attack (see Chapter 2.2). Hence, honeypots produce no
false positives, although their false negative rate can be high.

In the context of local monitoring, detection engines are the individ-
ual mechanisms used in the analysis units of a CIDS to detect attacks
in the data collected by passive sensors. As discussed in Chapter 2,
besides honeypots, such detection is either signature-based or anomaly-
based, however combinations of both mechanisms are also possible.
For instance, Bro IDS [120] contains, beyond signature-based, modules
that can be utilized for anomaly detection. Signature-based detection
requires existing signatures for an attack and thus is unable to de-
tect unknown attacks. Anomaly-based detection requires to create a
model of the normal behavior of the system. Each deviation from this
model is then interpreted as an anomaly and thus as an attack. Hence,
an anomaly-based detection can also detect unknown attacks. A com-
prehensive survey of anomaly-based detection methods is given in
[25] and [59].

To sum up, in an optimal CIDS design, the local monitoring should
be agnostic of the specifics of the utilized detection mechanisms. In
this sense, monitors in such a system can be seen as a means for
generating alert data that will be exchanged via the utilization of the
other blocks of the CIDS. Such a task can be envisioned by supporting
interoperable alert data exchange formats, e.g., the IDMEF (cf. Chapter
3.2).

36 taxonomy and state-of-the-art

Figure 8: Taxonomy of CIDSs.

Membership management

The membership management component of a CIDS is responsible
for the task of ensuring the overall connectivity of the monitoring
overlay of the CIDS, by managing the neighborhood relations between
monitors. Depending on the CIDS, such a membership management
can result in static or more dynamic overlays that allow the dynamic
inclusion and exclusion of monitors.

In the simplest case, the connections in the CIDS overlay are static
and pre-determined. Hence, an administrator needs to be involved
whenever new components are added to the system. Alternatively,
the CIDS overlay is set up dynamically. This can be done either via a
central server that features a global view of the system or via a mem-
bership management protocol that runs at each monitor and which
operates on local knowledge only. This classification of static and dy-
namic overlays is also shown in Figure 8. As it will become evident in

4.1 taxonomy of collaborative intrusion detection 37

Section 4.2.4, the majority of CIDSs adopt a dynamic overlay architec-
ture.

As the membership management controls the overlay neighbor-
hood of CIDS components, it can also enforce a certain network ar-
chitectural structure on it. Hence, the monitoring overlay can be ei-
ther centralized, hierarchical, or completely distributed. In a central-
ized CIDS, all monitors are directly connected to a central analysis unit.
A hierarchical (or decentralized) CIDS arranges all monitoring sensors in
a hierarchy that is rooted at a central analysis unit. Hence, monitors
in lower tree levels report to the monitors of higher levels. In addi-
tion, hierarchical CIDSs include approaches that make use of a number
of supernodes. Such an architecture retains the hierarchical structure
but also provides certain nodes additional privileges, e.g., the ability
to correlate data.

Distributed CIDSs prevent any SPoFs by deploying monitors in a flat
overlay without exposed components like a central analysis unit. Fur-
thermore, the membership management can either exhibit an unstruc-
tured overlay ID space or it can enforce a structure, in case an addi-
tional location service is required, e.g., on the basis of a Distributed
Hash Table (DHT) [4]. Thus, a structured ID space would provide
the advantage of a guaranteed broadcast and search functionality.
However, for CIDSs this requires to map monitored data to a one-
dimensional ID space. Therefore, multi-dimensional alert correlation
(cf. Section 4.1.3) cannot easily be achieved by structured CIDS over-
lays. Depending on the observed attack scenario, selecting the right
pattern as key for the DHT is crucial. For instance, a CIDS whose pur-
pose is to be able to detect attacks originating from the same source,
is usually making use of the source addresses from the monitored
packets as the DHT key.

Correlation and aggregation

Once data has been obtained and analyzed by the local monitoring
block, possible alerts need to be correlated and the monitored data
needs to be aggregated for a later dissemination to other monitors or
analysis units (cf. Section 4.1.4).

We distinguish between single-monitor and monitor-to-monitor cor-
relation mechanisms. Single-monitor correlation correlates alerts/data
locally at each monitor without sharing this information with other
monitors. Hence, plain alerts or locally correlated alerts are shared
either directly with an administrative interface of the CIDS or with
a central analysis unit that carries out further correlation. Monitor-
to-monitor correlation enforces the sharing of alerts/data with other
monitors that will attempt to correlate this information with local in-
formation. Therefore, such a correlation technique requires to share
alerts or even more detailed data with other monitors. For this rea-

38 taxonomy and state-of-the-art

son, sharing blacklists of malicious IP addresses still remains a single-
monitor correlation approach as this information cannot be seen as an
explicit input to the local correlation with local data.

Resulting and correlated alert patterns can have multiple dimen-
sions, which is a major challenge for collaborative intrusion detection
[179]. For example, to detect an attack that is conducted from sev-
eral source nodes simultaneously, it is not sufficient to correlate alerts
solely based upon the IP addresses of the attack sources. Moreover,
if more than one system is attacked at the same time, an alert cor-
relation via the IP addresses of the victims is also not meaningful.
Hence, a plethora of different patterns and combinations of them are
imaginable for alert correlation. For instance, combinations of source
IP, destination IP, protocol, source port, destination port, and even
payloads of monitored packets can be used.

Alert correlation techniques, in general, can be classified into the
following four different approaches [196, 47]:

• Similarity-based correlation approaches, e.g., [166, 37, 33], corre-
late alerts based upon the similarity of data or alert attributes.
The similarity of two data sets is reflected by a score that is
computed by similarity functions. Depending on the produced
score, the data is then either correlated or not.

• Attack scenario-based approaches take causality into account when
correlating data/alerts. Thus, they allow detecting complex at-
tacks that take place in several steps. Such approaches, e.g.,
[36, 58, 44], usually require to establish an attack database. Fur-
thermore, most of these approaches need to be initialized by
a training data set. Therefore, they provide high accuracy for
known attacks, but fail in detecting unknown attacks.

• Multi-stage alert correlation techniques aim at detecting unknown
multi-step attacks. Most such approaches presume the existence
of relations among the different stages of an attack. Thus, they
presume that an attack is conducted to prepare another one
[174]. Multi-stage alert correlation usually requires building up
a library of attack steps. Depending on the overall attack, multi-
ple steps are then mapped and/or correlated to attack scenarios.

• Filter-based approaches, e.g., [125], attempt to filter irrelevant
data or alerts to reduce the number of false positives in CIDSs.
For that, alerts are prioritized according to their impact on the
protected system. Thus, such approaches require a detailed de-
scription of the system to be protected, e.g., its network topol-
ogy and the deployed operating systems, that is not always
available. Moreover, the accuracy of the alert correlation de-
pends on the level of detail provided in the system description.

4.1 taxonomy of collaborative intrusion detection 39

Data dissemination

Correlated alerts and aggregated data need to be efficiently distributed
to avoid unnecessary overhead in a CIDS. The data to be disseminated
can range from alerts to monitored data at all possible kinds of ag-
gregation granularity. Especially CIDSs that focus on the detection of
highly tailored and targeted attacks require data sharing beyond sim-
ple alert dissemination.

The data dissemination is heavily influenced by the CIDS architec-
ture and therefore by the applied membership management.

centralized and decentralized cidss On the one hand,
centralized CIDS have a pre-defined and directed flow of information,
namely from monitors to the analysis unit. On the other hand, de-
centralized CIDSs arrange their monitors in a hierarchy with a strict
bottom-up flow of information. This hierarchy can be either com-
pletely static or changing dynamically, e.g., on the basis of the moni-
tored data.

distributed cidss In contrast, distributed CIDSs provide a flat
monitoring overlay and the highest level of freedom in exchanging
data in between monitors. Data dissemination in distributed CIDS can
either result in flooding the entire CIDS overlay or in a selective/par-
tial flooding by random walks [181] or gossiping approaches [57]. A
selective, yet more intelligent flooding of a distributed CIDS overlay
can be provided by using publish-subscribe methods. In such a sce-
nario monitors subscribe to other monitors for specific information,
e.g., alert data. This establishes groups of monitors that are interested
in the same kind of information. Within such groups, data can be ex-
changed in both directions and thus it is not limited to the direction
from publisher to subscribers. In distributed and DHT-based CIDSs,
subscribers can send information to the respective publishers, e.g.,
via a reverse multicast on top of DHT-based publish-subscribe.

Global Monitoring

For the detection of distributed attacks, a global monitoring mech-
anism is required that is built upon collaboration and information
exchange between monitors. This global monitoring, which is based
upon the data correlation and aggregation from Section 4.1.3, repre-
sents the detection capabilities of the respective CIDS.

Depending on the detection scope of the CIDS, the global monitor-
ing can vary from being generic to specific. Generic global monitoring
indicates systems that attempt to detect as many attacks as possible
without having any specialization to any specific attack class. The
specific scope, in the context of CIDSs, can refer to various specialized

40 taxonomy and state-of-the-art

detection classes. In particular, CIDSs may concentrate on detecting
insider attacks, DDoS attacks, on identifying malware that is attempt-
ing to spread over the monitored network, etc. In a glance, the global
monitoring building block refers to the collaborative capabilities of a
CIDS as well as to its detection scope.

The remainder of this chapter contains a detailed survey and com-
parison of existing CIDS systems, starting with an overview of central-
ized CIDSs in the subsequent section.

state-of-the-art

In the following a comprehensive analysis of the existing work in
CIDSs is given. For this, we utilize the membership management build-
ing block (cf. Section 4.1.2) as the basis for categorizing the systems
into the centralized, hierarchical and distributed classes.

Centralized CIDSs

In a centralized CIDS, monitors send all their information directly to a
central analysis unit that either applies detection algorithms and/or
alert correlation algorithms on the overall data. These systems are
widely used as they provide high accuracy rates at low architectural
complexity. However, in most centralized CIDSs, monitors are usually
configured manually. Furthermore, such systems do not scale with
the number of monitors and thus cannot protect large networks. In
addition, as all data is collected and all analysis is done at one central
unit, they might not be applicable for collaboration across different
organizations due to privacy issues.

DIDS

Snapp et al. proposed the Distributed Intrusion Detection System
(DIDS) [146] as one of the earliest centralized CIDSs in literature. DIDS

attempts to detect malicious activity, over the monitored network, and
create an overall score of its security state. The DIDS architecture com-
bines distributed monitoring with a centralized data analysis. DIDS

consists of three basic components: the DIDS director that represents a
central analysis unit, host monitors, and network monitors.

overview Network monitors, observe all packets that are trans-
mitted in their observed network segment. They apply simple host
analysis techniques, e.g., monitoring of certain services and protocols
such as rlogin and telnet, and utilize heuristics to identify potentially
intrusive behavior. The host monitor is responsible, for the monitor-
ing of a particular host. This unit also conducts a preliminary event
analysis to decide which of the alerts should be forwarded to the

4.2 state-of-the-art 41

director. The existence of a host monitor is not mandatory, as the
network monitor can also report network activities of hosts. In ad-
dition, in both monitor levels aggregation is done by removing non-
significant or OS-specific data before sending them to the central anal-
ysis unit. The main component of DIDS is the director, a centralized
expert system that receives all alerts from host and network monitors.
At this point data is aggregated via a rule-based expert system and
analyzed. Afterwards, the system decides whether there is a security
breach on a certain host or a large-scale attack on the whole system.
Finally, some correlation techniques are applied in DIDS. For instance,
the system creates a unique ID for each monitor entering the moni-
toring environment. Subsequently, any malicious activity related with
this particular ID is consider part of the same attack.

requirements DIDS applies only simplistic detection techniques
that can be evaded by a sophisticated adversary. Hence, the accuracy
of the system can be rather poor. Moreover, another disadvantage of
this CIDS is the lack of self-configuration mechanisms. Furthermore,
as the communication and computation overhead at the director in-
creases with an increasing size of the monitored network, DIDS does
not scale. The director component in DIDS is a SPoF and thus violates
the Resilience requirement.

SURFcert IDS

SURFcert IDS1 is a centralized CIDS, that is based solely on honeypots.
SURFcert’s IDS main scope is to create a large-scale CIDS that exhibits
zero (or a really low ratio of) false positives.

overview The system comprises of multiple monitoring points,
so-called passive sensors, that forward all their traffic via pre-established
Virtual Private Network (VPN) tunnels to a centralized analysis unit,
the so-called tunnel/honeypot server. At the tunnel server, the traffic is
then analyzed by one or more honeypots and the results are stored
on a separate logging server.

requirements In terms of accuracy, the exclusive usage of hon-
eypots results in a zero false positive rate, as any interaction with
these systems is considered to be an attack. Nevertheless, honeypots
cannot detect all attacks as they presume an interaction of the attacker
with the honeypot. SURFcert IDS uses Nepenthes [10], its successor
Dionaea2, the Kippo3 SSH honeypot, and Argos [126] as a secure sys-
tem emulator. All of these honeypots can only emulate certain ports
and protocols. Hence, they cannot cover all possible attacks. This also

1 http://ids.surfnet.nl
2 http://dionaea.carnivore.it
3 http://code.google.com/p/kippo

42 taxonomy and state-of-the-art

illustrates why honeypots should not be used as the only detection
method in an IDSs, but rather as an additional detection technology.
Moreover, both computational and communication overhead of the
tunnel server increase proportionally with the increasing number of
sensors. Thus, the tunnel/honeypot server is not only a SPoF but also
rendering the system to be not scalable. In addition, there is an ab-
sence of alert correlation and aggregation mechanisms, as all alert
data is transferred to the central analysis unit. Finally, SURFcert IDS
does not provide significant global monitoring capabilities, as it is
only able to present an overview of the local detected attacks (along
with some statistics).

CRIM

Cooperative Intrusion Detection Framework (CRIM), introduced in [34], is
a centralized cooperative module that obtains data from monitors or
rather isolated IDSs. CRIM’s scope is to analyze alerts and subsequently
attempt to identify the adversaries’ next possible steps. It provides
functions for managing, clustering, merging, and correlating alerts
and thus takes over the task of a central analysis unit in a CIDS. Mon-
itors send their alerts in the standardized IDMEF data format [39] to
the CRIM module.

overview To process the received data, an alert management func-
tion converts data to a set of tuples, which are then saved in a re-
lational database. Afterwards, an alert clustering function generates
clusters of alerts based on a relation of similarity [33]. The similarity
relation between two alerts is created by an expert system and it is
based on the classification of the alert, time, source, and target. Clus-
ters are inserted to an alert merging function that creates new global
alerts. The global alerts, consist of the alert data collected from each
cluster. Subsequently, global alerts feed a correlation function which
conducts further analysis and creates a set of possible actions that
might be performed by the adversary based on the current alert data.
Finally, an intention recognition function is used to provide the ad-
ministrator with attack information and the possible next steps of the
attacker.

requirements On the one hand, much of the authors’ work is
focused on correlation methods, which seriously reduces the overall
overhead. On the other hand, the multiple merging and correlation
that is performed by several functions, may lead to excessively ab-
stract alerts creating a limited detection coverage, and thus a poor ac-
curacy. Furthermore, the proposed similarity-based correlation mech-
anism will not be able to relate sophisticated attacks. For instance, a
slow distributed attack, from different sources, to different parts of
the monitored network would remain undetected. Finally, the usage

4.2 state-of-the-art 43

of IDMEF as a standardized language for exchanging alerts is an ad-
vantage in terms of the system’s interoperability.

DIDMA

Distributed Intrusion Detection system using Mobile Agents (DIDMA)
[74] is a CIDS for the detection of distributed attacks on large networks.
DIDMA makes use of static agents, that act as local monitors. In addi-
tion, mobile agents exist, that are responsible for alert dissemination
as well as correlation and aggregation of data. Moreover, DIDMA con-
tains a centralized entity that maintains lists of hosts experiencing
similar attacks.

overview A DIDMA network can be seen as a static overlay in
which local agents communicate with mobile agents. These local agents
act as host monitors and generate alerts whenever malicious activity
is detected, which also includes a classification of the type of the de-
tected attack. Based on this classification, a global list of IP addresses
is kept for nodes affected by the same type of attack, e.g., a DoS attack.
Whenever an alert is generated by an agent, the IP address of the re-
spective host is added in the list. Upon the occurrence of malicious
activity and to detect a possible intrusion in the network, a central
entity creates a mobile agent that can be transferred to other network
positions. For each identified attack, the mobile agent updates the
global list with IP addresses of other hosts that exhibit similar sus-
picious activity. A mobile agent is then sent out and subsequently
visits all hosts that are listed for the same type of attack. During this
process, the mobile agent aggregates and correlates information from
the visited hosts, updates the global list, and generates alerts when
detecting a specific attack. In the end, alerts are sent to a central user
interface for further analysis.

requirements DIDMA utilizes a central entity for creating a global
view of the overlay, as well as for dispatching mobile agents, that
represents a SPoF. DIDMA utilizes only a signature-based detection al-
gorithm and therefore cannot detect unknown attacks. Furthermore,
the system requires a valid classification of the alerts, for the agents to
operate properly. As this is not always possible the overall accuracy
could be low. The system’s overhead is highly affected by the number
of hosts that are under attack, which corresponds to the number of
hosts added to the global list. In addition, overhead arises when a
high percentage of the detected attacks cannot be aggregated. In both
of these worst-case scenarios DIDMA may produce considerably high
communication overhead. DIDMA’s resilience can be seriously affected
in the case of malicious agents. Furthermore, if a host is compromised
an adversary could also compromise mobile agents.

44 taxonomy and state-of-the-art

Summary

Centralized IDSs usually provide high detection accuracy rates. Their
main disadvantages are the lack of scalability in terms of the number
of supported monitors and the SPoFs that is posed by the central anal-
ysis unit. Nevertheless, due to their higher accuracy, centralized IDSs

are widely used in small to medium-sized corporate networks. DIDS

[146] was one of the first centralized approaches, and many systems
followed its basic architecture. In addition, CRIM [34] focuses on the
correlation and aggregation of alert data. More recent approaches like
SURFcert IDS provide interesting enhancements, e.g., honeypots as an
additional detection mechanism, while others, e.g., DIDMA, make use
of mobile agents. Finally, Table 2 provides a summary of centralized
CIDSs and their main building blocks (for an overall comparison of all
surveyed CIDSs the reader can refer to Tables 5 and 6).

Global

Monitoring

DIDS Host-based Single Monitor Centralized Central Entity Generic

SURFcert Honeypots

CIDS
Local

Monitoring

Correlation &

Aggregation

Membership

Management

Data

Dissemination

CRIM Network-based Single Monitor Centralized Central Entity

Generic

 Centralized Central Entity Generic

Attack Prediction

DIDMA
Network-based,

Signatures

Monitor-to-Monitor,

Similarity
Centralized, Static Selective Flooding

Table 2: Centralized CIDSs and their Building Blocks. The x marks 7 indicate
that the respective building block is not available.

Hierarchical CIDSs

Decentralized CIDSs organize monitoring points, or several different
self-contained IDS deployments, hierarchically in a tree that is rooted
at a central analysis unit. Within the tree, preprocessing and correla-
tion of the monitored data takes place. On the basis of this correlated
data, a distributed analysis for the detection of attacks takes place.
However, when data aggregation in a hierarchy takes place, then in-
formation is lost in each level of the hierarchy. As a result, highly
distributed and sophisticated attacks may remain undetected.

GrIDS

The Graph Based Intrusion Detection System (GrIDS) is intended for the
protection of large networks from actively propagating malware [155,
28], but can also detect attacks on individual hosts.

overview The network is split into several zones, called depart-
ments, that are organized in a tree-like structure. Each department
contains one analysis unit and several network and host monitors
that perform intrusion detection and subsequently send their data

4.2 state-of-the-art 45

to the analysis unit. Hence, each host in GrIDS belongs to a depart-
ment, while the departments are controlled by parental departments,
thus creating a hierarchy. Moreover, each department contains two
special modules: a software manager and a graph engine. The software
manager is responsible for the management of the local hierarchy sta-
tus, as well as the monitors within a department. The overall tree
hierarchy is ensured by a centralized hierarchy server. Finally, GrIDS

provides the ability to make dynamic changes in the hierarchy, via
the utilization of a user interface.

The graph engine receives input from monitors within a depart-
ment and thereupon establishes activity graphs that represent hosts
and the network activities between each other. These activity graphs
are firstly analyzed locally, and afterwards, they are aggregated and
passed upwards to the parental department and its graph engine.
At this point, all information from child departments is merged and
graphs with coarser resolution are established. Suspicious behavior is
detected on the basis of user-given detection rules that are expressed
through a defined policy language.

requirements The usage of detection rules suggests that in terms
of accuracy, the system would only detect attacks that are a violation
of a security policy. Therefore, sophisticated or unknown attacks may
still remain undetected. In addition, the aggregation mechanism may
not be able to detect a widespread attack that progresses slowly, as
only attacks that occur within a short time period can be detected.
Due to the division of the overall network into departments and their
hierarchical organization, GrIDS is scalable in terms of protecting net-
works of arbitrary size. However, the hierarchy server that controls
and maintains this hierarchy is a SPoF and serves as a potential bot-
tleneck. GrIDS is vulnerable to DoS and insider attacks, as with most
of the centralized and decentralized CIDSs discussed in this chapter.
Finally, the system exhibits a built-in privacy-protection mechanism
due to the way it handles its hierarchy; each department is only able
to observe activity that is restricted within its boundaries.

AAFID

The Autonomous Agents For Intrusion Detection (AAFID) is a hierarchical
CIDS proposed in [11, 149]. AAFID does not focus on the detection of
specific types of attacks but rather acts as a framework in which differ-
ent detection engines may be utilized. The system consists of agents,
transceivers, and monitors. With respect to our terminology, agents act
as monitors, while transceivers and monitors act as analysis units.

overview Agents are stationary in the AAFID architecture and it
is not foreseen that they migrate between different hosts. Each host
can contain multiple agents that perform event monitoring and af-

46 taxonomy and state-of-the-art

terwards send their reports to a transceiver. For instance, an agent
could monitor for large number of port scans targeting a protected
host. As soon as it detects this kind of activity, it will generate a re-
port and send it to a transceiver. The authors claim that a variety
of detection engines can be used in the agents, e.g., the IDIOT IDS

[32]. Transceivers are entities that supervise all local agents, analyze
their reports, aggregate the findings, and report them to one or more
monitors. Moreover, transceivers have full control over the agents and
can start, stop, and (re)configure them. Monitors can audit more than
one transceiver. As monitors receive alerts from all over the network,
they can perform data correlation over multiple hosts. However, the
authors [11, 149] do not give further details on that. Monitors can
also be organized hierarchically, so that lower-level monitors report
to higher-level monitors. Finally, a central monitor on top of the hier-
archy communicates with a user interface.

requirements AAFID utilizes a static hierarchical tree structure
with a designated monitor taking over the root position and thus
representing a SPoF. Hence, the system is not resilient against attacks
or failures of these entities. Moreover, despite the fact that the authors
consider low overhead and resilience against failures as important
requirements, they do not address them in the implementation of
their prototype. Finally, data dissemination as well as data correlation
and aggregation are not addressed in AAFID.

EMERALD

The Event Monitoring Enabling Responses to Anomalous Disturbances
(EMERALD) is another hierarchical CIDS proposed in [124]. It is de-
signed for the monitoring of large enterprise networks and focuses
on the detection of unauthorized access in domain resources.

overview The system distinguishes three different layers: service
analysis, domain-wide analysis, and enterprise-wide analysis. The service
layer covers the detection of attacks across services and components
within a single domain. The domain-wide analysis layer monitors
multiple services and components. The enterprise-wide layer on top
of the other layers, attempts to detect malicious activity across multi-
ple domains.

Each of the aforementioned layers contains EMERALD monitors that
use both signature-based and anomaly-based detection engines. Data
dissemination in EMERALD is achieved via a subscription-based com-
munication scheme. In more detail, each monitor may subscribe to
others through a client/server-based asynchronous model and re-
ceive the respective alert data automatically. In addition, authors sug-
gest that to ensure the security of the messages exchanged between
monitors, a public key authentication may be used. Finally, there is

4.2 state-of-the-art 47

subsequent work on alert correlation techniques [166, 125], as seen in
Section 4.1.3, that have been tested in an EMERALD environment.

requirements The hybrid detection engine used in EMERALD en-
sures a high accuracy for both known and unknown attacks. The sys-
tem however does not provide any mechanism for the detection of
insider attacks. Regarding interoperability, EMERALD provides an API
that can be used to interconnect different monitoring tools. Never-
theless, this requires additional effort for the user of the system. In
addition, no standardized data format for information exchange with
other IDSs is used. Finally, according to the authors, ensuring reliable
data delivery may increase the overall overhead of the subscription-
based data dissemination mechanism.

HIDE

Hierarchical Intrusion Detection (HIDE) is another approach described
in [192], that mainly focuses on applying novel anomaly detection
techniques for the detection of malicious activity.

overview HIDE arranges its monitors in a static hierarchical tier
structure and employs anomaly detection via statistical preprocess-
ing and neural network classification. Each tier in HIDE contains mul-
tiple monitors which are the so-called Intrusion Detection Agents (IDAs).
Each of them performs monitoring either on host or network level.

An IDA collects network traffic or host events and abstracts them
to statistical variables and reports. These reports are then statistically
checked and compared against the reference model maintained in
the IDA. Afterwards, the result is taken and fed into neural network
classifiers for further analysis and to determine if the traffic is normal
or not. Finally, reports for higher tiers are generated and information
is displayed via a local user interface.

requirements As HIDE uses anomaly detection techniques, higher
false positive rates can be anticipated. In addition, the experimental
results from Zhang et al. [192] indicate that low-volume attacks are
hard to detect. Moreover, the authors mainly concentrate on describ-
ing the detection algorithm and on the selection of the best neural
network. For this reason, many details are missing to properly assess
HIDE according to the requirements from Section 3.2.

Summary

Decentralized CIDSs are intended for the protection of large networks
by overcoming the scalability problems of centralized CIDSs. However,
most of the observed decentralized CIDSs fulfill the proposed require-
ments only partially, as they usually contain one or more SPoFs. More-

48 taxonomy and state-of-the-art

over, decentralized CIDSs aggregate and correlate the data from lower
levels and pass them over to the next level. At each level, the amount
of data is reduced at the cost of lost information, which can result
in a lower detection accuracy compared to a centralized approach.
Most of the proposals in this category focus either on novel architec-
tures (GrIDS, AAFID) or detection algorithms (HIDE). In these terms,
EMERALD, although an early approach, is the most complete solution
with respect the requirements proposed in this thesis. Lastly, Table
3 provides a summary of hierarchical CIDSs and their main building
blocks (for an overall comparison of all surveyed CIDSs the reader can
refer to Tables 5 and 6).

Network-based,

Hybrid

Monitor-to-

Monitor, Filter
Hierarchical Publish-Subscribe Access Control

Network-based,

Anomaly
Single Monitor Hierarchical, Static Flooding Generic

Malware

Spreading

Host-based
Monitor-to-

Monitor
Hierarchical ? Generic

Global

Monitoring

GrIDS

AAFID

EMERALD

HIDE

Host-based and

Network-based

Monitor-to-

Monitor
Hierarchical Flooding

CIDS

Local

Monitoring

Correlation &

Aggregation

Membership

Management

Data

Dissemination

Table 3: Hierarchical CIDSs and their Building Blocks. A question mark ?
symbol indicates unknown cases.

Distributed CIDSs

A distributed CIDSs architecture contains no central component nor
hierarchy, as the tasks of the central analysis unit are distributed to
all monitoring points. As a result, such a system that follows the P2P

design principle, can scale with any number of monitors and thus
can protect large networks. Moreover, the lack of a strict hierarchy,
as in decentralized CIDSs, provides more freedom in interconnecting
monitors and thus can be of benefit when encountering sophisticated
and highly distributed attacks. However, depending on the specifics
of the distributed CIDS, this can also be a drawback; as there is no
hierarchy, there is no component in the CIDS that has a global view of
the protected network.

As described earlier in this chapter, distributed CIDSs can be further
classified with respect to the enforcement or not of a structure in the
ID space of the corresponding P2P overlay. Hence, in the following we
separate the analysis of distributed CIDSs accordingly.

Structured CIDSs

Structured CIDSs impose a structure on the participating monitors by
organizing them using a DHT. A DHT provides guaranteed broadcast
and search functionality when storing data in a distributed manner.

4.2 state-of-the-art 49

Most structured CIDSs that are given in the following make use of
DHTs for the efficient storage of attack-related information, e.g., main-
taining distributed blacklists. Others, e.g., INDRA, use a DHT for orga-
nizing their monitoring points.

However, this requires structure in terms of a fixed overlay neigh-
borhood that is based upon the IDs of the CIDS monitors. Hence, this
does not allow for flexible overlay connections. Moreover, since DHTs

require that the data to be stored is mapped to the ID space of the DHT,
any multi-dimensional data has to be reduced to a single dimension
representation. Therefore, when storing IDS data in a DHT, it is neces-
sary to select a single property as a key for the DHT. As a result, only
single-attribute lookups and no complex multi-attribute searches are
feasible. Moreover, as a consequence of the strict ordering of nodes
and data in the ID space, most DHT algorithms and implementations
cannot fulfill the domain awareness property. Due to this, privacy
issues may arise when storing the monitored data.

indra The Intrusion Detection and Rapid Action (INDRA) is a P2P-
based CIDS approach proposed by Janakiraman et al. [70]. The system
does not focus on any particular type of attacks, but rather on generic
malicious activity detection.

overview INDRA organizes its monitors, so-called daemons, in a
Pastry-DHT [136] and uses Scribe [23] as publish-subscribe mechanism
for managing data sharing between daemons.

Monitors in INDRA act as both monitors and analysis units. When
an attack is detected by an INDRA daemon, a proactive or reactive de-
fensive action occurs. An INDRA daemon consists of four sub-components,
Watchers, Access Controllers, Listeners and Reporters, that are described
in the following:

• Watchers detect suspicious activities on a host or network level.

• Access Controllers are responsible for taking action against par-
ticular users, e.g., denying access to an account that is marked
as compromised.

• Listeners aggregate the alerts generated by watchers and convey
them to the access controllers.

• Reporters communicate with other hosts, in the sense of sending
and receiving alerts to and from other hosts respectively.

The authors do not describe the detection mechanism that is used
by Watchers. The information dissemination in INDRA is handled by
Scribe. For every attack category, a Scribe group is created and nodes
can subscribe to these groups. For instance, nodes may subscribe to
the Scribe groups for SSH attacks and DoS attacks. In addition, the

50 taxonomy and state-of-the-art

authors claim that alternative models, such as rumor-spreading, can
be used for the data dissemination, but without concrete suggestions
on how to deploy them.

requirements INDRA tries to improve its accuracy by allowing
the administrators to create plugins for new attacks. However, this
manual intervention by the administrator needs significant effort as
the aforementioned plugins have to be written manually (as code).
Furthermore, a compromised monitor can reduce the accuracy of
INDRA by producing fake alerts as a form of a DoS attack. For ex-
ample, consider the case when a compromised peer claims that an-
other peer within the trusted network is compromised. One of the
main suggested defensive mechanisms is the creation of a blacklist.
Hence, all peers in the network will insert a suspicious peer to their
list, blocking it from any further communications.

larsid Zhou et al. propose the Large Scale Intrusion Detection
(LarSID) a P2P-based CIDS based on a publish-subscribe mechanism
[195, 194].

overview Every peer in the system is a monitor (via the usage of
local IDSs) and also an analysis unit that creates a list with suspicious
IP addresses and distributes it to the P2P network.

In order to be able to share alert information between different
peers, the system employs a publish/subscribe mechanism on top of
a DHT, i.e., a modified Pastry [136] DHT named Bamboo [132, 133]. The
alert data in LarSID is in the form of lists of attackers’ IP addresses.
Each peer in the monitoring network is responsible for maintaining a
watchlist for its local subnetwork, correlating subscription messages,
and also generating notification messages regarding the identified
malicious IP addresses. The system also utilizes a threshold policy.
In more detail, if a certain number of monitors have flagged an IP ad-
dress as malicious, then notifications are sent over the network. Oth-
erwise, i.e., the number of detections of an IP is below the threshold,
a new entry is created in the monitor’s watchlist.

requirements As a distributed CIDS, the system scales to large
networks. This is also supported by the experimental results in [194].
However, as reported in [193], certain nodes can become overloaded
when a large number of attacks is originated from the same IP ad-
dress. LarSID, assumes that all involved peers in the monitoring net-
work are to be trusted. For this, it utilizes a Public Key Infrastruc-
ture (PKI) in order to ensure that participating nodes are authenti-
cated. Moreover, communication between all monitors takes place
over SSL. The main disadvantage of such an approach is its global

4.2 state-of-the-art 51

monitoring capabilities. LarSID can only detect attacks that involve a
common source or destination IP address.

similar approaches Many CIDS approaches have been proposed
that are similar to the LarSID, e.g., Komondor [35], Wormshield [22],
the P2P-based CIDS of Marcher et al. [104], and the Cyber Disease
DHT (CDDHT) [88]. All of the aforementioned proposals are similar in
terms of their structured CIDS architecture, although the underlying
DHT implementation may differ. Moreover, they exhibit differences
with respect to their specific purpose as well as in their key selection
for the DHT. In more detail, their global detection varies from worm
detection and containment (Wormshield), and DoS attacks, port scans,
worms and Botnets (CDDHT) to more flexible ones (Komondor [35] or
[104]). Finally, RepCIDN [62] is another DHT-based CIDS that mainly
focuses on the construction of a reputation mechanism to handle in-
ternal attacks.

Unstructured CIDSs

Unstructured CIDSs provide more flexibility as no restrictions are im-
posed in selecting their overlay neighbors (peers to exchange data).
In fact, this feature can be exploited in establishing flexible overlay
relationships upon properties that are different from node IDs, e.g.,
based upon similarities in the monitored data. However, as there is
no structured ID space, as with the case of structured CIDSs, data can-
not be stored and retrieved efficiently as in structured CIDSs. For this
reason, unstructured CIDS are not optimal for the distributed storing
of attack-related information, e.g., blacklists, and to efficiently look
them up again.

domino The Distributed Overlay for Monitoring Internet Outbreaks
(DOMINO) is described in [190].

overview DOMINO utilizes a hybrid architecture with three kinds
of entities: axis overlay, satellite communities and terrestrial contributors.
Axis nodes act as both monitors and analysis units. Satellite commu-
nities and terrestrial contributors act as additional monitoring points
that send their alert results to axis nodes for further analysis.

Axis nodes are the central component of the system and are con-
nected via an (unspecified) overlay network. The axis nodes are as-
sumed to be especially trustworthy and use a PKI for mutual authen-
tication. Moreover, to counter insider attacks and fake alerts, each of
them can enforce a threshold filtering upon received data. Satellite
communities are smaller networks of satellite nodes that locally im-
plement a version of the DOMINO protocol. They are organized in a
hierarchy that is always led by an axis node. Finally, terrestrial con-
tributors expand the system by adding non-trustworthy peers who

52 taxonomy and state-of-the-art

supply summaries of their detected attacks, without implementing
the DOMINO protocol.

DOMINO utilizes signature-based IDSs, firewall rules (for intrusion
response) and also honeypots for intrusion detection. Active-sinks are
nodes that monitor a large number of unused IP addresses, with a low
false positive rate that provides the possibility to produce signatures
for unknown attacks. Finally, the alert messages are represented in
XML format and are exchanged periodically.

requirements The hierarchical structure and the combined us-
age of both network-based IDSs and honeypots increase the overall
accuracy of DOMINO. In addition, the alert messages are structured
via XML, which ensures interoperability between different systems.
Significant communication overhead may arise if the alerts’ broad-
casting period is shortened, compared to the one implemented, i.e.,
hourly alert broadcasting. Resilience against certain insider attacks is
achieved by a static axis node architecture. However, this inflexibility
in the axis overlay renders the system vulnerable to attacks on axis
nodes. Moreover, multiple compromised and cooperating axis nodes
can pose a threat to the overall system, especially as DOMINO contains
no explicit countermeasure against insiders, e.g., a reputation system.
Nevertheless, internal DoS attacks, e.g., by sending large amounts of
alerts from a compromised axis node, can be mitigated by a threshold
filtering mechanism at each axis node.

neighborhood-watching Ramachandran et al. describe a P2P-
based CIDS that uses mobile agents in a neighborhood-watch approach
[130].

overview Nodes in this system are arranged in an unstructured
P2P network in which different kinds of agents are exchanged among
peers to check for possible attacks.

Peers watch out for their neighboring peers and store critical infor-
mation on each of them, e.g., checksums of critical data and operating
system files as well as system binaries. If an anomaly is detected by
a neighbor of an attacked peer, a voting process among all its neigh-
bors takes place. When the majority agrees that intrusive behavior has
been observed, all neighbors will attempt to protect themselves and at
the same time notify and warn other peers in the network. To gather
knowledge about neighbors in the P2P network, each peer sends dif-
ferent types of agents to its neighbors. These agents can perform a
variety of tasks at the visited systems, e.g., establishing checksums of
data files or looking for signatures of known viruses or worms. More-
over, agents are also used when voting about intrusive behavior in an
overlay neighborhood.

4.2 state-of-the-art 53

requirements Besides a discussion of the system, the authors
give no further evaluation of their proposal, nor any details on the
methods used for the overlay establishment. At the same time, com-
munication overhead issues may arise when a large number of agents
is sent over the network to perform monitoring. The overall accuracy
of the system could be low as information and data sharing is only
done within a neighborhood level. Moreover, the authors do not pro-
vide enough insights for the detection mechanisms utilized. However,
the voting process could have a positive effect in reducing the false
positive ratio. Furthermore, the voting process can also provide re-
silience against insider attacks. Finally, sending agents to other sys-
tems to check crucial files that may conflict with the privacy require-
ment.

netbiotic NetBiotic [182] is a distributed CIDS that is based on
the JXTA P2P framework [64]. The focus of NetBiotic is not on detect-
ing specific attacks, but rather on the fast creation of a network of
interested peers for alert information exchange. Hence, the goal is
to provide basic protection to participating peers, e.g., by detecting
rapidly propagating malware. With respect to our terminology, each
NetBiotic peer is both a monitor as well as an analysis unit and hosts
a notifier and a handler component.

overview At each peer, the notifier reads from log files written by
security related applications, e.g., by a local IDS. On that basis, the no-
tifier detects attacks, creates statistics of attacks, and finally transmits
these statistics to other peers. In particular, the notifier calculates and
transmits the percentage by which the average number of detected
attacks differs from the average hits detected in earlier time intervals.
If this percentage is significantly higher than a pre-configured thresh-
old, the peer is considered to be under attack.

The handler is responsible for receiving messages from other peers
and, if need be, to take action, like modifying the security settings
of the end-user applications or to introduce new firewall rules. A
significant difference from most of the other IDS proposals is that
NetBiotic takes defensive actions only when the number of attacks
detected is higher than the average, i.e., when an epidemic outbreak
occurs. Moreover, one of the main features of NetBiotic is the ability
to flexibly adapt the security policy, e.g., when the rate of past attacks
is higher than the current ones.

requirements High detection accuracy rates are not the main
focus of NetBiotic. As mentioned earlier, many attacks might remain
undetected if there is no significant difference on the overall detec-
tion percentage. Interoperability is partially achieved as the system’s
architecture is supposed to be compatible with any IDSs that is able

54 taxonomy and state-of-the-art

to record its alerts in a log file. However, certain dependencies exist,
such as the need for the incorporation of a parser to extract data from
the log files. In addition, the countermeasures can be OS-specific. Fi-
nally, the decrease of the security level when there is a low attack
detection rate appears interesting. However, this feature may be ex-
ploited by an insider to lower the overall security of a network and to
subsequently attack it.

trust-aware cids Duma et al. proposed a trust-aware P2P-based
overlay [41] collaborative intrusion detection based upon the JXTA
framework [64]. This CIDS specifically addresses insider threats through
the utilization of a trust-aware correlation engine and a dynamically
adjustable trust management scheme. With respect to our terminol-
ogy, each peer in this system is both a monitor and an analysis unit.

overview The key component in each peer is the event manager
that informs other peers for intrusion attempts and receives alerts
from other peers. In addition, this unit provides filtering capabilities
based on existing rules. The alert dissemination is done through tar-
geted flooding to known peers. All exchanged alert messages are in
the IDMEF format. To create trust among monitors, a list is maintained
for acquaintance peers. Hence, every communication between moni-
tors, e.g., the exchange of alerts, is evaluated and a score is generated
for each peer. The higher the trust level of a peer, the bigger is its im-
pact on others. The acquaintance list is dynamically updated and in-
cludes only the best available candidates that in addition had to pass
a probation period. However, the trust mechanism requires that each
peer is able to determine whether an intrusion event was genuine or
a false positive. This cannot be always ensured and it highly depends
on the accuracy of the employed local IDS. For the prototype imple-
mentation in [41], Snort has been used. As this is a signature-based
IDS, the probability that a detected intrusion is actually an attack is
high.

requirements The system is resilient to most of the insider threats,
which includes Sybil and newcomer attacks. Nevertheless, some at-
tacks are still feasible, e.g., sleeper attacks in which a highly trusted
and long-term participating peer suddenly turns malicious. Such a
peer would threaten the system as long as it remains in the acquain-
tance lists of other peers and can send fake alerts to others. The pro-
totype system given in [41] makes use of the Snort IDS that cannot
detect unknown attacks and that can be evaded as described in Sec-
tion 3.3.1. However, the system is interoperable as Snort comes with
IDMEF support for exchanging alerts.

4.2 state-of-the-art 55

worminator In [93, 94] Locasto et al. introduce the P2P-based
IDS Worminator, whose peers act as monitors and each of them hosts
a network-based IDS.

overview Worminator exchanges compressed information via Bloom
filters [19] with peers that are selected by a distributed correlation
scheduling algorithm, called Whirlpool. Bloom filters are an efficient
one-way data structure and are used to ensure privacy and compact-
ness of the produced alerts. Upon a local alert, the corresponding
information, e.g., source IP address and source ports, is inserted to
a Bloom filter. Hence, the Boom filter represents a compressed list of
suspicious hosts, a so-called watchlist. The watchlist is shared via the
Whirlpool algorithm that creates dynamic neighborhood relationships
in the overlay. Only neighbors exchange alert data via Bloom filters.
However, the authors do not provide in-depth details on how this
distributing scheduling algorithm works.

requirements Bloom filters are probabilistic data structures. False
positive matches are possible especially with an increasing filling de-
gree. However, there can be no false negatives, an element either has
been included to the Bloom filter or not. Hence, when the number of
included elements increases, also innocent hosts that have not been
explicitly included to the Bloom filter could be identified as malicious.
As a result, this affects the detection accuracy of Worminator beyond
the actual detection mechanism. Nevertheless, the exchange of Bloom
filters decreases the signaling overhead compared significantly to ex-
changing the uncompressed input data. Overhead is also reduced via
the dynamic neighborhood formation in Whirlpool, at least in com-
parison to a full mesh distribution scheme or a random selection
distribution scheme. As in many CIDSs, insider attacks are not cov-
ered by Worminator, therefore, malicious monitors can generate fake
alerts and accuse other monitors to be malicious. Privacy of the sensi-
tive data from the distributed alerts can be partially achieved by the
utilization of Bloom filters, since data is compressed and hashed. In
addition, the system uses a fixed list of participants for the alert cor-
relation, so that only legitimate users are granted with Bloom filter
access. However, an insider could gain access to the Bloom filter and
be able to launch subsequent attacks. Such an attack could be to insert
IP addresses of innocent hosts to accuse them for malicious behavior.
Nevertheless, this can be avoided by protecting the Bloom filters via
cryptographic means. Finally, an internal attacker could also query
specific IPs to check if they had been detected in the Bloom filter.

quicksand Quicksand is a CIDS that applies a distributed pattern
detection mechanism for connecting distributed events manifested on
a number of hosts [82].

56 taxonomy and state-of-the-art

overview In a global monitoring level, Quicksand utilizes hybrid
detection algorithms locally, and afterwards builds up signatures, so-
called attack scenarios, that are used for connecting attacks that are
distributed over the monitored network. To achieve this, each peer
in Quicksand is a monitor that contains local IDSs with some pre-
filtering capabilities and an analysis unit, the so-called event correla-
tion unit. Correlation units are also responsible for intrusion response,
e.g., reconfiguring firewalls upon the local detection of an attack. As
Quicksand focuses more on the distributed pattern detection, it does
not presume a specific detection engine. Monitors can locally apply
signature-based as well as anomaly-based detection [83] techniques.

The system makes use of a centralized unit that stores new at-
tack signatures and updates the signature databases of monitors. To
represent signatures of distributed attacks, the authors introduce the
Attack Specification Language (ASL) for describing subsequent intru-
sion steps as blocks of patterns. This allows to express complex re-
lationships between distributed events on different hosts. Whenever
an event on one host induces communication that leads to another
event on another host, both events can be ordered and are set into
relation in ASL. Afterwards, each attack scenario described in ASL is
transformed to a directed and acyclic pattern graph. Nodes in the
graph correspond to the distributed events that take place at differ-
ent hosts. Connections and relationships are represented as edges,
whereby one node constitutes a particular event and its successor
node is the immediate successor of that event in the ASL. Once estab-
lished, the centralized unit disseminates these pattern graphs to the
monitors. Finally, at each monitor, the respective event correlation
unit can check for possible intrusions. For that, it receives pre-filtered
streams of events from the local IDSs and executes a distributed mis-
use detection algorithm that detects the occurrence of attack patterns
on the basis of the pattern graph. In their prototype, the authors com-
bine a Snort-like signature-based detection with an anomaly-based
detection mechanism from [83]. To ensure compatibility, the system
applies IDMEF [39] for exchanging information between detection and
correlation units as well as in between different monitors.

requirements In terms of accuracy, while hybrid detection can
be used locally by Quicksand, this is not the case for its global dis-
tributed pattern detection scheme. In this case, signatures (attack sce-
narios) have to be created, so false negatives, i.e., related attacks that
failed to successfully be connected, exist. Moreover, the system al-
lows only tree-shaped patterns to be created globally. However, this
decision might not be always realistic, as it excludes other kind of
patterns that might be more suitable. The system remains scalable
as detection and correlation are performed locally first. Subsequently,
only necessary information is exchanged between monitors, without

4.2 state-of-the-art 57

the need for involving a central party in the detection process. Finally,
Quicksand uses IDMEF for improved interoperability and the authors
explicitly provide information for the integration of third-party detec-
tion engines and IDSs respectively.

Summary

Distributed CIDSs were created to overcome the scalability limitations
of centralized CIDSs approaches as well as the limitations of hierarchi-
cal approaches. In such an architecture, no entity has a global view of
the network. Thus, the challenge is to provide accuracy rates close to
that of a centralized CIDS, while protecting larger networks in which
a centralized intrusion detection is no longer feasible.

On the one hand, structured distributed approaches provide effi-
cient storing and lookup functionality. At this level, proposals such
as LarSID offer a scalable CIDS solution with a fair, yet one dimen-
sional, global detection block. On the other hand, unstructured sys-
tems have the ability to couple nodes on the fly, but with a less effi-
cient way to store and retrieve alert data. In this direction, approaches
such as DOMINO and the Trust-aware CIDS provide some promising
and interesting properties [190, 41] Table 4 provides a summary of
distributed CIDSs and their main building blocks (for an overall com-
parison of all surveyed CIDSs the reader can refer to Tables 5 and 6).

Quicksand
Network-Based,

Hybrid
Monitor-to-Monitor

Distributed,

Unstructured
Selective Flooding Generic

Malware

Spreading

Trust-aware

CIDS
Network-Based,

Signatures
?

Distributed,

Unstructured
Selective Flooding Insider Attacks

Worminator
Network-Based,

Hybrid
Single Monitor

Distributed,

Unstructured
Selective Flooding

NetBiotic Host-based 
Distributed,

Unstructured
Selective Flooding

DOMINO
Network-Based and

Honeypots
?

Distributed,

Unstructured
?

Neighborhood

Watching
Network-Based,

Anomaly
?

Distributed,

Unstructured
Selective Flooding

Monitor-to-Monitor,

Similarity

Distributed,

Structured
Publish-Subscribe

Malware

Spreading, DDoS

Malware

Spreading

Generic

Generic

Data

Dissemination

Global

Monitoring

INDRA
Network-based,

Signatures
?

Distributed,

Structured
Publish-Subscribe Generic

LarSID

CIDS
Local Monitoring

Correlation &

Aggregation

Membership

Management

?

Table 4: Distributed CIDSs and their Building Blocks. The x marks 7 indicate
that the respective building block is not available, while a question mark ?
symbol indicates unknown cases.

Qualitative Comparison

In this section, we give an overall comparison of the surveyed solu-
tions of CIDSs by focusing on the individual proposed requirements

58 taxonomy and state-of-the-art

given in Section 3.2. Table 5 provides an overview about all surveyed
CIDSs from this chapter according to their employed building blocks
(cf. Section 4.1). Table 6 provides a summary of our findings by list-
ing all discussed CIDSs and comparing them to the requirements from
Section 3.2.

DIDS

SURFcert

DIDMA

Host-based

Honeypots

CIDS

Network-basedCRIM

Network-based,
Signatures

Local Monitoring

GrIDS

AAFID

EMERALD

HIDE

INDRA

LarSID

DOMINO

Neighborhood
Watching

Single Monitor



Monitor-to-Monitor,
Similarity

Monitor-to-Monitor

NetBiotic

Trust-aware
CIDS

Quicksand

Worminator

Network-based, Hybrid

Network-based, Hybrid

Network-based,
Signatures

Monitor-to-Monitor,
Similarity

Hierarchical, Static

Distributed,
Structured

Distributed,
Structured

Single Monitor Centralized Central Entity Attack Prediction

Host-based

Network-based,
Anomaly

Network-based and
Honeypots

?

Network-based,
Signatures

Network-based,
Anomaly

Network-based, Hybrid

Host-based

Host-based and
Network-based

?

Single Monitor

Insider Attacks

Malware Spreading

Generic

?



?

Monitor-to-Monitor

Distributed,
Unstructured

Distributed,
Unstructured

Distributed,
Unstructured

Distributed,
Unstructured

Distributed,
Unstructured

Malware Spreading

Generic

Access Control

Generic

Generic

Generic

Generic

Flooding

Selective Flooding

Selective Flooding

Selective Flooding

Generic

Malware Spreading,
DDoS

Generic

Generic

Malware Spreading

Publish-Subscribe

Selective Flooding

Selective Flooding

?

Hierarchical

Hierarchical

Central Entity

Central Entity

Selective Flooding

Centralized

Centralized

Centralized, Static

Hierarchical

Distributed,
Unstructured

Correlation &

Aggregation

Membership

Management

Data

Dissemination
Global Monitoring

?

Publish-Subscribe

Flooding

Publish-Subscribe

Monitor-to-Monitor

Monitor-to-Monitor,
Filter

Single Monitor

?

Table 5: CIDSs and their Building Blocks. The x marks 7 indicate that the re-
spective building block is not available, while a question mark ? symbol
indicates unknown cases.

accuracy Foremost, the task of a CIDS is the detection of attacks,
therefore maximizing the accuracy of this detection is the most im-
portant requirement for CIDSs. With respect to the proposed building
blocks of a CIDS, accuracy is mainly influenced by the employed lo-
cal detection mechanisms (local monitoring) and the detection mech-
anisms that operate on shared data (global monitoring). Moreover,
essential for the global monitoring are the employed data correla-
tion and aggregation mechanisms. These mechanisms pre-process
and merge subsets of the data obtained from different monitors as a
basis for the detection mechanisms operating on them. It is expected
that the class of centralized CIDS provides a higher detection accu-
racy than a decentralized or distributed CIDS. Centralized CIDSs and
their employed detection mechanisms can operate on the full data
set, whereas decentralized CIDSs operate on aggregated data and dis-

4.2 state-of-the-art 59

Ø    ?  ? 

Ø       

Ø    ? ?  

Ø  Ø ?  Ø  

  Ø   ?  

? ?   ? ? ? 

   ? ? ? Ø 

Ø ?  ? ? ? ? 

Ø ?  Ø    

? ?      

 ? ?   ? Ø 

? ?   ?   

 ?      

Ø ?   ?   

?   ? Ø   

Ø Ø   ? ?  

 C
e

n
tr

al
iz

e
d

D
e

ce
n

tr
al

iz
e

d
D

is
tr

ib
u

te
d

Worminator
Quicksand

Trust-aware CIDS

GrIDS

AAFID

EMERALD

HIDE

CIDS

DIDMA

INDRA
LarSID

DOMINO
Neighborhood-Watching

NetBiotic

CRIM

A
cc

u
ra

cy

O
ve

rh
ea

d

Sc
a

la
b

ili
ty

R
es

ili
en

ce

D
o

m
. A

w
a

r.

Se
lf

-
co

n
fi

g
.

In
te

ro
p

er
.

DIDS

SURFcert

P
ri

va
cy

Table 6: CIDSs and the proposed requirements. Checkmarks 3 indicate the ful-
fillment of the individual requirement, x marks 7 their non-fulfillment,
average symbols Ø their partial match and a question mark ? symbol indi-
cates unknown cases.

tributed CIDSs employ detection mechanisms that operate on subsets
of the monitored data.

However, the level of achieved accuracy is determined by the spe-
cific detection mechanism that is employed by the respective CIDS. To
make it worse, most of the surveyed CIDSs lack an evaluation of their
accuracy in detecting attacks. A comparison of the surveyed CIDSs

would even require to quantitatively evaluate all surveyed CIDSs in a
comparable setting, which is simply not feasible. For this reason, it is
difficult to state which approaches meet the accuracy requirements.

As centralized CIDSs operate on the full data set, we presume them
to meet the accuracy requirements. Decentralized and distributed
CIDSs are considered to have a lower accuracy and thus meet the re-
quirements only partially. However, several of the discussed systems
focus more on the architectural level than on the actual mechanisms
for detecting attacks. For this reason, we consider these systems, e.g.,
NetBiotic and AAFID, to have a rather low accuracy and thus assumed
not to meet the accuracy requirements. Among the decentralized ap-
proaches, we only assume EMERALD to have a sufficiently high accu-
racy as it utilizes a hybrid detection mechanism.

Among distributed CIDSs, we presume INDRA and NetBiotic to have
a low accuracy in detecting attacks. INDRA makes use of simplistic de-
tection methods and regarding NetBiotic, accuracy is not in the main
scope of the system, but rather the creation of a network of peers for
fast information exchange. The only distributed CIDS that we assume

60 taxonomy and state-of-the-art

to provide a good accuracy is DOMINO. This approach exhibits hybrid
local monitoring via a combination of honeypots, dynamic firewall
rules and network-based IDSs. However, in DOMINO this comes at the
expense of a significant computational and communication overhead.

overhead The communication overhead created by a CIDS is a
direct result of the employed data sharing and dissemination mech-
anisms. Among the discussed CIDSs, a multitude of techniques is
used for this purpose, e.g., reverse multicast, publish-subscribe meth-
ods, and flooding mechanisms. However, all of these techniques have
advantages and come with inherent drawbacks. For instance, while
publish-subscribe algorithms seem to be promising for a deployment
in CIDSs, it is not trivial to select the subscription criteria on which
basis monitors subscribe to data. Flooding mechanisms come at high
signaling overhead but cause monitored data to be available through-
out a CIDS overlay and thus can result in an increased accuracy. There
is a trade-off between the tolerated or caused signaling overhead and
other requirements such as the resulting accuracy.

As can be seen in Table 6, we assume that most of the discussed
CIDSs cannot meet the requirement of minimal overhead. However, to
compare them with each other and to assess their overhead, similar
to their accuracy, an extensive quantitative evaluation of all discussed
systems would be required. As this is not possible, we can only base
our assessment on the architecture of the observed systems, their de-
sign choices, and their limitations. For instance, the CIDS Worminator
tries to minimize the communication overhead by the usage of Bloom
filters and by exchanging them in between monitors via a certain
scheduling algorithm. However, the data reduction by Bloom filters
comes at the expense of a decreased accuracy.

scalability Scalability is a fundamental requirement, as CIDSs

are intended to protect large networks. From the CIDS building blocks,
the membership management is assumed to have the biggest influ-
ence on the scalability of CIDSs. Centralized approaches, as the name
implies, utilize a centralized membership management and thus can-
not scale to large networks. The central analysis unit represents a
SPoF and a bottleneck. There are also several decentralized CIDSs that
employ a centralized membership management, e.g., GrIDS, and thus
do not scale as well. Scalable, decentralized systems with interesting
architectures are the AAFID, that creates a hierarchical tree structure,
and EMERALD, that divides its monitored space in a multi-layer fash-
ion. The class of distributed systems is assumed per definition to be
scalable. All distributed CIDSs summarized in this chapter seem to be
free of a SPoF and bottlenecks. However, it is again difficult to assess
the scalability of the discussed CIDSs individually, as most of them
have not been described in sufficient depth.

4.2 state-of-the-art 61

resilience A CIDS has to be resilient to failures and attacks, which
also includes insider attacks from compromised and malicious sys-
tem components. Hence, when under attack, resilient CIDSs need to
stay available or at least provide graceful degradation. By their nature,
centralized CIDSs cannot be assumed to be resilient. An attack on their
central component will bring down the system immediately. Decen-
tralized CIDSs are more resilient against failure and attacks. However,
a failure of the central analysis unit on top of their hierarchy can
result in service unavailability. While there are mechanisms for au-
tomatic restoration of tree structures in case of failures, none of the
surveyed systems makes use of them. Furthermore, in many cases,
e.g., HIDE, the overall architecture appears to be static. Most of the
observed distributed CIDSs utilize well studied P2P protocols for mem-
bership management, e.g., DHTs. These approaches are well studied
and provide mechanisms for graceful degradation and fast restora-
tion after failures. Hence, we assume them to be resilient to failures
and external attacks.

However, most of the CIDSs discussed in this chapter are vulner-
able from insider attacks. Only the Trust-aware CIDS [41] and the
Neighborhood-Watching approach from Ramachandran et al. [130] pro-
vide countermeasures against malicious insiders. Hence, besides them
we assume no other of the surveyed systems to be fully resilient and
thus we rate them only as partially resilient.

self-configuration Self-configuration is a pre-requisite for a
resilient system as it allows for an automatic system restoration, e.g.,
after a failure or an attack has taken place. In addition, self-configuration
avoids a manual and error-prone configuration of CIDSs. Distributed
approaches inherently provide self-configuration mechanisms, e.g.,
via well-researched P2P mechanisms. DIDMA is the only centralized
CIDS that, partially, offers self-configuration methods, e.g., agents are
able to operate and self-configure themselves in the case of a failure
of their dispatcher. For all other centralized CIDSs and also the decen-
tralized CIDSs discussed in this chapter, it is not clear to which extent
they support self-configuration.

privacy Privacy in terms of not disclosing data to unauthorized
sources is also an important pre-requisite when deploying a CIDS in
larger scale and across different domains. However, only a few of
the discussed systems include privacy-protecting mechanisms. For in-
stance, Worminator partially achieves this requirement with the com-
bination of utilizing Bloom filters along with a trusted list of partic-
ipant peers. In addition, GrIDS exhibits a built-in privacy-protection
mechanism due to the way it handles its hierarchical architecture. In
more detail, each department is able to only observe activity that is
restricted within its boundaries.

62 taxonomy and state-of-the-art

interoperability A CIDS should also be interoperable with other
CIDS deployments. For that, several of the observed systems, e.g., the
Trust-aware CIDS [41] or CRIM [34], make use of standardized formats
for data exchange, e.g., IDMEF.

domain awareness Finally, it is important for a CIDS to be able
to take into account constrains that originate from the existence of
security policies (e.g., the inability to disseminate alerts to all subnet-
works). However, as it is depicted in Table 6, none of the surveyed
CIDSs exhibits such domain awareness capabilities. This thesis con-
tributes to the fulfillment of this requirement by proposing a novel
CIDS in Chapter 9.

summary

To sum up, centralized CIDSs have the potential to offer the highest
accuracy, but do not scale. Hence, they can only be used for the pro-
tection of small infrastructures, e.g., small corporate networks. For
larger networks, such as a smart grid or large corporate infrastruc-
tures, more scalable solutions are required. Decentralized CIDSs seem
to be suitable at first sight, but they are vulnerable from attacks and
provide a lower accuracy than centralized systems. In terms of over-
head, decentralized CIDSs’ performance is highly dependable in re-
gards to the utilized building blocks for correlation and aggregation.
Most of the distributed IDSs are scalable to large networks and are re-
silient to attacks, but this comes at the expense of more overhead and
an accuracy degradation compared to centralized systems. Hence, es-
pecially in this category, a lot of challenges remain to be addressed
by future research.

However, especially in the class of distributed CIDSs, many interest-
ing systems have been proposed so far. For instance, DOMINO utilizes
a hybrid architecture, by combining a P2P-based core of especially
trustworthy nodes with less trustworthy monitors that are organized
in hierarchies. Nevertheless, as mentioned in the detailed analysis of
DOMINO in Section 4.2.3.2, this might create inconsistencies with re-
gard to our requirements, especially with respect to resilience against
insider attacks. In addition, approaches from the structured CIDSs

class, such as LarSID, demonstrate the efficiency and scalability of P2P

CIDSs when the detection of certain attacks is required, e.g., DDoS.
The main finding of this chapter is that none of the observed sys-

tems can satisfy all requirements for CIDSs. While most distributed
CIDSs are scalable and resilient, we assume that distributed approaches
provide a lower detection accuracy than centralized or decentralized
CIDS and induce too much overhead for a practical deployment. How-
ever, we also need to admit that our analysis of the surveyed CIDSs

has been difficult, because almost none of them have been evaluated

4.3 summary 63

in large-scale or in real-world environments. This clearly shows the
need for more research in collaborative intrusion detection, especially
in the area of distributed CIDSs.

Part II

A L E RT D ATA C R E AT I O N

The second part of the thesis presents contributions in the
area of alert generation in the context of intrusion detec-
tion. First, Chapter 5 introduces HosTaGe, the first mobile
honeypot. The honeypot is capable of emulating various
protocols and systems, detect attacks, and also to gener-
ate respective signatures to be fed into IDSs. Chapter 6 dis-
cusses TraCINg, a cyber-incident monitor that makes use
of HosTaGe sensors, and the lessons learned from a long
period of deployment. Lastly, Chapter 7 proposes a toolkit
for the automatic generation of synthetic, yet realistic, in-
trusion detection datasets.

5
H O S TA G E M O B I L E H O N E Y P O T

In the previous chapters the thesis has argued for the necessity of
innovative mechanisms for generating alert data. In this context, the
current chapter proposes a novel honeypot for mobile devices, called
HosTaGe, which is able to generate (alert) signatures on the fly. The re-
mainder of this chapter is organized as follows: In Section 5.2, the de-
sign of the system is described along with justification behind the var-
ious design choices that were made. In addition, the section discusses
aspects with regard to the different protocols emulated by the honey-
pot. Furthermore, Section 5.3 presents the evaluation of the system
with a focus on its accuracy and applicability. Section 5.4 summarizes
and concludes this chapter. Finally, Figure 9 depicts the overview of
the chapter with regard to the overall thesis structure.

First mobile
honeypot

On the fly
signature

generation

Advanced
detection

mechanisms

Figure 9: Overview of the Chapter and key contributions.

67

68 hostage mobile honeypot

introduction

The dependence of our society on IT networks is constantly in-
creasing. In addition, the emergence and interconnectivity of
Industrial Control Systems (ICSs) creates a plethora of security

challenges that need to be addressed. For instance, recent highly so-
phisticated and tailored attacks against these systems, e.g., Stuxnet
[86] and Flame [180], highlighted this fact.

Besides the traditional approach of deploying IDSs (see Chapter 2.1),
honeypots can also assist to increase the overall detection accuracy
of a monitored network. Honeypots (see Chapter 2.2) are systems
whose only value is to be probed, attacked and compromised [151].
Their purpose is to attract malicious users, study their activities and,
at the same time, reduce the attack surface. It is important to note that
since honeypots do not feature any other purpose, by definition, any
interaction with them is considered an attack. Thus, they exhibit a
low false positive rate as all incoming traffic is considered malicious.

Coffee Shop

Internet

Synchronization
Server

Internal
Attacks Scanning...

Infected
Machine

External
Attacks

Infected
Machine

Attacker

HosTaGe
User

Scanning...

Figure 10: Attack surfaces and collaborative capabilities of HosTaGe.

This chapter, proposes HosTaGe a honeypot for mobile devices. The
honeypot emulates all major protocols that are commonly used by
malicious entities to perform attacks. The main contributions of this
chapter are summarized in the following:

• Mobile Honeypot: HosTaGe (which stands for Honeypot-To-Go)
is the first mobile honeypot. The introduced mobility allows for
honeypots to travel and collect local threats before they become
global. In addition, it serves as a ready-to-use security mecha-
nism, for network administrators and security experts, to exam-
ine the security status of their network.

• Attack Surfaces: HosTaGe is intended for detecting attacks in a
variety of situations. This is depicted in Figure 10; the honey-

5.2 system overview 69

pot can be utilized to detect both internal and external attacks.
Internal attacks refer to malicious activity that originates from
inside the monitored network (e.g., a malicious insider or an in-
fected machine), while external attacks involve adversaries that
come from outside the network (e.g., from the Internet).

• Alert Correlation: HosTaGe is able to identify attacks that origi-
nate from the same entity (i.e., unique IP address) and make use
of multiple protocols. These attacks can realistically describe
cases of Advanced Persistent Threats (APTs) and tailored real
world attacks [148].

• Signature Generation: The honeypot is able to generate and ex-
tract signatures from detected attacks, which can subsequently
be imported into other security mechanisms such as IDSs and
anti-virus scanners.

• Collaboration: HosTaGe further takes advantage of its mobility
by collaborating between different (HosTaGe) instances. Honey-
pots send their alert data to both a central server and to all other
deployed honeypot instances.

Besides the aforementioned contributions, the honeypot was de-
signed in a user-centric way to assist non-expert users. Moreover,
HosTaGe offers some unique properties such as the ability to evade
detection. In addition, it can emulate various Operating Systems (OSs)
and dynamically change the OS with respect to the needs of the user.
Lastly, the honeypot is one of the few that support protocols that are
intended for the communication of ICSs.

system overview

This section discusses the design of the honeypot, by providing a de-
scription of the architecture of the system and its Graphical User In-
terface (GUI). Afterwards, a comprehensive discussion of the protocol
emulation is given, accompanied by a formal model and a description
of the detection mechanisms that the honeypot exhibits.

Architecture

Figure 11, depicts an overview of the architecture of HosTaGe. The
honeypot is written in Java and supports the majority of recent An-
droid OS versions. It runs on top of the Dalvik Virtual Machine en-
vironment [46] and consists of several modules that are closely inter-
connected, namely HosTaGe Core, Logger, Port Binder and the GUI.

When the honeypot is started, the HosTaGe Core runs in the back-
ground as a Service and activates the Emulator submodule. This sub-
module then emulates the selected protocols and listens to incoming

70 hostage mobile honeypot

Figure 11: High level architectural view of HosTaGe.

connections in the respective ports that are associated to each of the
protocols. In order to bind the sockets with the ports, the Port Binder
which runs on the Linux Kernel level is called by HosTaGe Core with
the port that it should listen on. Afterwards, the respective module lis-
tens for incoming connections. Upon receiving a connection request,
HosTaGe Core alerts the Emulator submodule which in return calls the
Logger to record all activities that are being observed. At the same
time, the user is notified of the activities that are being detected via
the GUI.

The core provides an interface for the activation or deactivation of
the implemented protocols emulations. It also sends status reports to
the GUI to provide the user with connection information. It consists of
two submodules called Emulator and Connection Guard. As the name
implies, the emulator is responsible for the simulation of protocols. It
executes multiple threads (i.e., one thread for each selected protocol)
that listen to incoming malicious connections to the respective ports.
In addition, the emulator submodule activates the Logger module for
logging all activities.

The connection guard prevents that the hosting device gets com-
promised. Furthermore, the Connection Guard is also responsible for
blocking incoming connections when it suspects that the device is
under attack, e.g., due to a DoS attack. In such a case it limits the
maximum allowed incoming connections, from the same source IP
and/or the same destination port. Besides that, established connec-
tions are also terminated after a certain time-interval.

5.2 system overview 71

(a) Threat Indicator (b) ThreatMap

Figure 12: Graphical User Interface of HosTaGe.

Lastly, the application, via the logger module, supports different for-
mats for the generated log files. It also supports exporting the logs to
a plain text file and/or to a database. In addition, for interoperability
reasons HosTaGe can produce logs in the JSON1 format for further
processing of the alert data by other third-party applications.

With regard to the GUI and the Protocol Emulation a comprehensive
description is given in the following.

Graphical User Interface

The GUI of HosTaGe has been designed to assist both advanced and
ordinary users. In the following, some of the specific user-centric and
user-friendly components of HosTaGe are described: Threat Indicator,
ThreatMap, Profile Manager, Alert Data Synchronization as well as vari-
ous other enhancements.

• Threat Indicator: The default view of the application is designed
in such a way that HosTaGe immediately conveys the network
security status via a Threat Indicator as seen in Figure 5.12(a).
Via four different animations, the application indicates all pos-
sible states of the honeypot in the connected wireless network:
1) Enabled 2) Disabled 3) Previously Attacked 4) Attacked.

• ThreatMap: ThreatMap is a visualization mechanism for HosTaGe
to geographically illustrate the recorded attacks via a multitude
of techniques, e.g., GPS data and GeoIP discovery. The exchange
of alert data results on the creation of a “heat map” of infected
networks that the user can avoid as well as share with other

1 http://www.json.org

72 hostage mobile honeypot

users (see the following Alert Data Synchronization paragraph).
An example of the ThreatMap is shown on Figure 5.12(b).

• Profile Manager: The honeypot offers the user the ability to dy-
namically change the emulated OS. Through the Profiles menu,
the user can easily choose from a list of profiles that offer combi-
nations of OSs and services that the honeypot will emulate, e.g.,
a Windows XP machine, a nuclear power plant, etc. In addition,
advanced options are also offered, e.g., the creation of custom
profiles.

Whenever a new OS or system is selected, HosTaGe stops the em-
ulation of protocols that are no longer required and respectively
begins the ones that are needed. Furthermore, the behavior of
certain protocols might change to adapt to the needs of the em-
ulated system. For instance, the implementation of the HTTP
differs when emulating an Apache server from the case of emu-
lating a nuclear power plant system.

• Alert Data Dissemination: As an additional proactive mechanism,
the system allows alerts to be disseminated within the HosTaGe
community. This collaborative feature (see Section 5.1) aligns
with the concept of mobile honeypots; HosTaGe instances can
learn local threats and disseminate the information before the
threat propagates. This way, users are well-informed of (even)
malicious wireless networks that have never been connected to
in the past. Moreover, such alert information can be fed into the
honeypot and visualized (e.g., via the threat map –see above).

The dissemination of alert data can be performed in a device-to-
device manner, e.g., via NFC and Bluetooth. Such an approach
can be useful in the case where users or corporations want to
privately exchange data. Furthermore, data can be exchanged
in a broader way, as well, by making use of a centralized server
(cf. Chapter 6). In both cases HosTaGe will ignore duplicate alert
entries and will only accept unique, i.e., unseen, data.

• Other Enhancements: Many additional features exist in order to
assist the user, such as statistics and alert records of the moni-
tored networks. Moreover, to support advanced users and net-
work administrators, additional settings are configurable. For
instance, the user can activate specific ports and services through
the Services menu. Finally, in-depth customization of the honey-
pot can be made via the Advanced Settings section within the
Settings menu.

5.2 system overview 73

Protocols Emulation

The emulation of several protocols is of high importance for honey-
pots. This section discusses the various protocols that are emulated
by HosTaGe. The protocols are logically classified into four classes,
namely: ICS, communication, monitoring and access protocols.

ICS protocols

modbus protocol Among the various profiles supported by ICS

devices, Modbus acts as a backbone for device communication. Mod-
bus is a serial communications protocol initially published by Modi-
con for usage in its Programmable Logic Controllers (PLCs). It is now
considered as the standard that connects industrial devices, and in
particular it establishes communication between master and slave de-
vices. As Modbus can also be used in a wireless mode for Remote
Terminal Unit (RTU)-based communication, it is widely used in vari-
ous ICS networks, e.g., nuclear power plants, gas and oil distribution,
for communication between the PLCs.

Modbus has instruction sets for the interaction of devices. PLCs have
registers2 as memory units. The instruction sets are specified as func-
tions which denote Read/Write (R/W) operations on the registers of
the PLCs. Modeling the correct behavior of Modbus requires simulat-
ing the responses of the Modbus system for a command issued by
a Modbus master device. HosTaGe simulates the Modbus communi-
cation protocols by implementing the request/reply mechanism. The
Siemens PLCs also have registers as memory units, which store sensor
data and application logic. The registers have the memory mapped to
blocks at the register level. Through the Modbus protocol, the data in
registers can be accessed and set. HosTaGe supports this request/re-
ply paradigm for the memory mapped registers through dedicated
data structures. Furthermore, the honeypot also supports the instruc-
tion set of Modbus, which is implemented as function codes. The
instruction set involves registers’ R/W, as well as the Modbus service
diagnostics. Moreover, the Modbus implementation aims on avoiding
detection from well-known reconnaissance tools. In more details, the
Nmap3 port scanning tool, with special scripts, is able to perform
Modbus-specific detection and reconnaissance. Similarly, the Metas-
ploit exploit toolkit provides also support for the detection and ex-
ploitation of Modbus. HosTaGe is also able to respond appropriately
in all these cases. Section 5.3.3, discusses the importance of this in the
context of honeypot evasion attacks.

2 For simplicity reasons coils are included in the term registers, even though strictly
speaking they exhibit differences.

3 https://nmap.org

74 hostage mobile honeypot

s7 protocol The S7 protocol (S7 Communication) is a Siemens
proprietary protocol utilized in PLCs of the Siemens S7-300/400 fam-
ilies. It is used for PLC programming, exchanging data between PLCs,
accessing PLC data from SCADA systems and for diagnostic purposes.
The protocol forms as a base for accessing the registers for R/W oper-
ations and also programming the PLC for user defined tasks. The S7

protocol has been implemented to simulate the communication with
the PLC with the memory mapping of the Siemens S7 300.

Communication protocols

http and https protocols HTTP is supported by the majority
of the PLCs for remote configuration purposes. The HTTP web server
in the PLC enables GET/POST messages for information exchange.
This HTTP server is simulated by HosTaGe through its dynamic HTTP

protocol implementation. A default welcome page that simulates the
configuration website of a PLC is displayed when an adversary tries
to access port 80. Similarly, HosTaGe supports the Hypertext Transfer
Protocol Secure (HTTPS).

smb protocol The Server Message Block (SMB) protocol enables
network file sharing between devices of the same network. Previous
analysis of the Stuxnet malware made evident that many attacks tar-
geting ICSs make use of SMB to propagate. In Modbus, master sys-
tems control slaves and disseminate commands. These systems are
usually control servers or host systems connected to PLCs or slaves
that receive critical information and updates from the sensors placed
on devices and PLCs. The master system is usually a Windows XP
host connected in a LAN. By emulating the SMB protocol, along with
Modbus, it is possible to detect not only external attacks but also ma-
licious activities originating from the Intranet, e.g., the propagation
of Stuxnet. Thus, in HosTaGe the SMB protocol has been implemented
and customized to simulate a Modbus master system. The customiza-
tion involves using the SMB protocol to simulate HosTaGe as a shared
network drive to which a malware will try to propagate after infiltrat-
ing a host machine. The propagated file is detected, by the so-called
file injection module, and its hash value is sent to the VirusTotal4 sand-
box for further analysis.

mysql A number of malware and adversaries attempt to attack
MySQL servers. Such attacks are usually password guessing attacks
or brute force attempts. The honeypot is able to detect such malicious
behavior by emulating a basic MySQL server and replying to a num-
ber of basic commands.

4 https://www.virustotal.com

5.2 system overview 75

ftp protocol Similarly to the aforementioned MySQL case, HosTaGe
enables support for the File Transfer Protocol (FTP) by emulating a re-
spective FTP server.

sip protocol Attacks on the Session Initiation Protocol (SIP) have
been increasing over the last years [45, 117]. The honeypot can simu-
late the basic functionalities of a Voice Over IP (VOIP) server by mak-
ing use of the SIP protocol.

Monitoring protocols

snmp protocol The Simple Network Management Protocol (SNMP)
is widely utilized for monitoring network devices for administrative
purposes. For instance, the Siemens S7 family of PLCs supports the
configuration of client devices through SNMP. This allows to remotely
manage devices on the network. The SNMP protocol has been imple-
mented (using the open source snmp4j library) to simulate an SNMP

agent working on the Modbus slave profile and SNMP manager on the
master profile.

smtp protocol The Simple Mail Transfer Protocol (SMTP) is also
widely used for various purposes. HosTaGe is emphasizing on the
utilization of the protocol in the ICS context. For example, SMTP is
used as a notification system for ICSs; it is utilized to notify devices
about changes that trigger tasks. The SMTP service implemented in
HosTaGe does not provide the notification service, rather, it provides
a very basic protocol emulation for simple service discovery.

Access protocols

telnet protocol The Telnet protocol allows accessing a basic
shell on devices in order to read memory, delete files and execute
commands. The Siemens S7 PLC also supports Telnet; users or appli-
cations can communicate with the PLC for file and backup operations.
As such, HosTaGe supports this protocol by providing shell emulation
for the attackers.

ssh protocol Secure Shell (SSH) is one of the most common ac-
cess protocols. HosTaGe supports a basic simulation of SSH by emu-
lating basic commands and offering the adversary a simple terminal
interaction.

The remainder of this section goes deeper into the detection and
signature generation mechanisms of HosTaGe, by first providing the
fundamental formal model, in the form of Extended Finite State Ma-
chines (EFSMs), followed by a discussion of the signature generation.

76 hostage mobile honeypot

Formal Model

The detection mechanisms in HosTaGe are formalized with the adap-
tion of an Extended Finite State Machine (EFSM) model. An EFSM has
all the properties of a normal Finite State Machine (FSM) with the
added feature of utilizing arbitrary if-conditions, instead of only true
or false conditions, to specify how a state transitions to a new state
[50]. The formal model of the proposed detection mechanism is given
by the Attack Detection EFSM M = (S, s0, I,O,V ,P, δ, λ), illustrated in
Figure 13, where S is the set of all states, s0 the initial state, I is the
input, O is the output, V are the variables, P are the predicates, δ a
set of transitions and λ the set of outputs generated by transitions.

Figure 13: EFSM of the attack detection and signature generation mecha-
nism.

The set of all states is represented with S. The EFSM starts in the Nor-
mal Behavior state, represented by s0. If any protocol communication
is detected by the honeypot, the EFSM transitions to the Attack state.
For as long as the same protocol attack is observed, the state remains
the same. If a timeout occurs the EFSM transitions to the Generate Sig-
nature state followed by the Issue Alert state. The signature generation
is optional and will capture either a single attack or multistage attack
types. After an initial attack, observing attacks originating from other
protocols (but the same host) that have not yet been observed moves
the state to the next Multistage Attack Level x, where x corresponds to
the number of different protocols observed so far after the first one.

The inputs I, outputs O, variables V and predicates P are tightly
linked together. State transitions are carried out whenever specific in-
puts i ∈ I are received. These transitions may also generate an output
o ∈ O. In the Normal Behavior, Attack and Multistage Attack Level x
states, the Protocol Control Information (PCI) of the supported pro-
tocols are used as inputs and outputs. As such, {Modbus, S7, SNMP,
HTTP, Telnet , SMB, SMTP, HTTPS, SSH, FTP} ∈ I ∈ O for these states.
The inputs I are not limited, however, to only ports. Distinctive PCI

activities of interest on a protocol are also considered inputs. For in-

5.2 system overview 77

stance, the act of requesting a file through the SMB protocol is con-
sidered an input itself. V is a finite set of variables. These variables
are used to construct a set of predicates P used for determining if
a state transitions to another one. Each attack state holds a boolean
variable v ∈ V for each emulated port. If a particular port has been
observed in the entire life of the EFSM, the corresponding variable for
that port will be set to true. Besides variables, predicates P consist of
the logic operator AND and the arithmetical operator =. We define
the Protocol Connection predicate as the condition where a new pro-
tocol is observed without having observed other protocols yet. The
Different Protocol predicate indicates, as the name suggests, that a new
protocol has been observed after having seen at least one other. If any
of these predicates is true a state transition takes place.

The final element of the model is the set of transitions δ(si, i,p) = sj
and the outputs λ(si, i,p) = o generated by the transition itself. The
set of transitions specify that whenever state si ∈ S receives the input
i and the predicate p ∈ P is satisfied, the EFSM transitions to state sj
and outputs o ∈ O. The outputs are used by the Generate Signature
state to create signatures for misuse analysis.

Detection Mechanisms in HosTaGe

The honeypot can distinguish between three different classes of at-
tacks: Single-Protocol Level Detection (SPLD), Multi-Stage Level Detection
(MSLD) and Payload Level Detection (PLD).

SPLD attacks refer to those that occur on a single protocol, e.g., HTTP

connection attempts, without observing other protocols or any dis-
tinctive payload-level information. This is the simplest type of detec-
tion that can potentially still contain interesting results. For example,
we can infer that a multitude of malware is trying to exploit the Tel-
net protocol (cf. Section 5.3) again due to the increasing amount of
IoT devices such as IP Webcams. As this is the simplest of the three
detection mechanisms, the description of its respective EFSM is omit-
ted. In fact, the EFSM shown in Figure 13 can be seen as a generalized
example of SPLD.

MSLD refers to attacks that originate from the same source and at-
tempt to exploit different types of protocols within a small window
of time. These type of attacks are identified by the honeypot with the
EFSM shown in Figure 13, as described in Section 5.2.4. An important
factor in MSLD is the time-window (tw) that determines whether an
attack should be mapped as part of the SPLD or the MSLD class. This
means that when the EFSM is on the Attack state and no further ac-
tivity is detected (for a maximum of tw) a timeout will occur and
the attack will be identified as SPLD. The tw can be adjusted with re-
spect to the monitored network and its requirements. In this chapter
(cf. Section 5.3) we experimented with the tw value of 15 minutes.

78 hostage mobile honeypot

In practice, this suggests that when tw = 15, a transition from the
Attack to the Multistage Attack Level 1 state (via the Different Protocol
predicate) is possible when a new attack occurs within the specified
tw.

Figure 14: EFSM for PLD in the case of Stuxnet propagation.

The Payload Level Detection (PLD)5 extends the applicability of the
EFSM with respect to the inputs I. Referring back to the formal model,
the outputs o ∈ O from the Attack and Multistage Attack Level x states
are used in the Generate Signature state to create signatures. Signa-
tures are also EFSMs that comply with the presented model. As it was
already mentioned, the input is not limited only to a port or protocol
but also to potentially interesting/distinctive payload-level informa-
tion.

Take Figure 14 as an example of an EFSM that represents a signa-
tures generated by the PLD. This signature identifies Stuxnet attacks
from the set of outputs O obtained from the Attack Detection EFSM

shown in Figure 13. The Detection of Stuxnet EFSM assumes an initial
Normal Behavior state and transitions to SMB Attack if an SMB protocol
is observed. Stuxnet tries to inject an infected file through SMB. After
a file is received, the file itself (or its hash value) is sent to VirusTotal
and, if the file is indeed malicious, the EFSM transitions to the Stuxnet
Attack state where the presence of Stuxnet is reported.

Signature Generation

As discussed in the previous section, upon detecting an intrusion,
HosTaGe is able to generate signatures that can be utilized by IDSs. IDSs

usually inspect all incoming packets for malicious content and make
use of signatures to determine whether traffic is malicious or not.
HosTaGe captures not only the attack packets, but also all the received
connection requests at the protocol level. In addition, it records the
entire connection tear-down that takes place between an adversary
and the honeypot. This is important for both the signature generation
process as well as the post-attack analysis that the user might want
to perform.

HosTaGe utilizes specific modules to handle the aforementioned fea-
tures (mainly the modules included in the logger, the signature gener-

5 HosTaGe currently supports PLD for the SMB, HTTP and Modbus protocols.

5.3 evaluation 79

ator and the HosTaGe core – cf. Figure 11). The current version of the
honeypot supports the signature generation process for the Bro IDS

[120]. Bro is considered the state of the art in IDSs (see Chapter 2.1);
it is highly adjustable and it is widely utilized especially for research
purposes [95, 43].

The Bro IDS uses the so-called Bro language, an event-driven script-
ing language that can be used for extending and customizing the IDS’s
functionality. The Bro IDS signatures rely on packet data to check for
the content to be matched for incoming packets. The signature gener-
ation module in HosTaGe is used to generate the signature files6 for
Bro. By specifying the protocols for the signature generation mecha-
nism, the packet information of the connection is derived through the
attack records module from HosTaGe to a template signature file which
is used to generate signature files for Bro. The attack record module of
HosTaGe generates signature files for a protocol.

An example of a signature generated by HosTaGe, for the Modbus
protocol, is shown in the Listing 1. This signature, automatically cre-
ated from HosTaGe and written in the Bro language, is able to detect
the well-known Metasploit script for Modbus services identification
(also see Section 5.3.3).

Listing 1: Modbus attack signature generated by HosTaGe.

1 signature modbus-signature{

ip-proto == tcp

dst-port == 502

payload /\x21\x00\x00\x00\x00\x06\x01\x04\x00\x01\x00\x00/

event "Modbus attack"

6 }

evaluation

This section presents various experiments that demonstrate the detec-
tion capabilities of HosTaGe as well as its ability to generate signatures
from the identified attacks. In addition, observed multi-stage attacks
are discussed and some insights are given regarding the detectability
of HosTaGe. The reader can also refer to Appendix A for some addi-
tional evaluation results of the honeypot with regard to its battery
consumption and its ability to detect malware.

Honeypot Comparison

As a first evaluation step, HosTaGe is compared to the Conpot honey-
pot7. Both systems were deployed in a controlled environment with

6 With respect to the in the Bro IDS terminology HosTaGe can also generate security
policy files.

7 The exact version of Conpot was “0.2.2”.

80 hostage mobile honeypot

no firewalls in between the honeypots and the Internet. The honey-
pots had similar IP addresses in the sense that they were in the same
/24 subnet. The evaluation period for the tests was 12 weeks starting
September 2015.

The results of the analysis are given in Figure 15. The results gath-
ered from the two honeypots are compared for the HTTP, Modbus and
S7 protocols. In addition, the section presents the results gathered for
Telnet (even though Conpot does not support it) as Telnet is consid-
ered an important attack factor for ICSs networks [109]. The reader
should note that the S7 protocol comparison presented in the figure
is for a shorter period of time (i.e., 8 weeks) as S7’s implementation
in HosTaGe was completed in a later stage. As one can observe from
the results, HosTaGe exhibits good detection accuracy in comparison
to Conpot. In fact, in most cases HosTaGe detected more attacks than
Conpot (e.g., HTTP, S7), while for the case of Modbus the number of
detected attacks is almost equivalent.

Figure 15: Comparison of detected attacks on HosTaGe and Conpot for HTTP,
Modbus, S7 and Telnet. Note, that Conpot does not support the
Telnet protocol.

It should also be noted that the purpose of this experiment was to
compare the two honeypots and to identify automated attacks that
target ICS networks. For this reason no advertisement of the honey-
pots was made in any way. However, as it is shown below, both hon-
eypots were probed by the well known search engine Shodan.

Lastly, Figure 16 depicts the malicious unique IP addresses (and
also their intersection) that were detected for each honeypot (for the
HTTP and Modbus protocols). At a glance, the histogram shows that
HosTaGe was able to consistently detect more unique IP addresses (of
attackers) than Conpot.

5.3 evaluation 81

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5 6 7 8 9 10 11 12

T
ot

al
 A

tta
ck

s

Week

Conpot
Common
HosTaGe

Figure 16: Comparison of unique and common malicious IP addresses tar-
geting HosTaGe and Conpot

Multi-Stage attacks

During the observed period, HosTaGe also automatically detected three
multi-stage ICS-specific attacks (within a time-window (tw) of 15 min-
utes). First, an attack from Iran was detected, which based on the
Geo-IP information, appeared to be close to where Stuxnet was ini-
tially detected, i.e., the Tehran Nuclear Research Center. The attack
included a portscan and sent an HTTP GET request to the honeypot.
Subsequently, the honeypot detected an Nmap script that was trying
to validate whether a Modbus service is indeed running on the host.
The second multi-stage attack was originated from the Zhejiang Nu-
clear Industry in China. It started with a portscan, continued with an
HTTP attack and finished with Modbus protocol requests that queried
specific ICS services. The third interesting attack was from an area
close to a power plant in Colombia. The attack stages consisted of a
web-connection through HTTP, a general purpose scan of the network
and finally an attempted Telnet connection to the honeypot.

Further experiments are required (e.g., for a longer observation pe-
riod) to conclude on the aforementioned multi-stage attack results.
Nevertheless, the fact that all the detected attacks appear to be origi-
nating from power plant locations suggests that the attacks could be
triggered by existing (ICS-specific) malware that attempt to propagate
further.

82 hostage mobile honeypot

Honeypot Evasion

One essential requirement for honeypots is their ability to remain un-
detected; hiding the fact that they are not a real system but a honey-
pot. This section discusses how, in the aforementioned experimental
setup, HosTaGe managed to remain undetected (while Conpot did not
for example) from the Shodan8 search engine.

Shodan is a specialized search engine that crawls the Internet and
attempts to identify connected devices, e.g., IP web-cameras, ICSs,
etc. [15]. Through the continuous process of crawling and indexing,
the system creates an up-to-date database of systems and services
exposed on the Internet. Recently, Shodan implemented detection
mechanisms to identify honeypots. It performs a series of probes,
and checks, and subsequently creates a score for each probed device.
Based on this score value, Shodan determines whether a specific sys-
tem is likely to be a honeypot or not.

A few weeks after the initial experiments, both HosTaGe and Con-
pot received probes from IPs that belong to Shodan. The protocols
being probed were S7, Modbus, SSH and HTTP, among others. For
the SSH and HTTP protocols the messages and requests were of low
complexity; the HTTP protocol involved a GET request and the SSH an
attempt to establish a connection. The S7 and Modbus attacks were
more complicated. The conducted analysis indicates that the probes
are, most likely, the results of modified Nmap/Metasploit scripts for
ICS identification. These probes were able to identify Conpot as a hon-
eypot but not HosTaGe.

In more details, the S7 attack involved queries regarding the de-
vice type, location, serial number, plant identification and module
name. The Modbus attack involved fetching details of certain units
(i.e., unit number 0 and 255) and their slave data. On the one hand,
Conpot could not respond reasonably in all the aforementioned re-
quests (either due to utilized static serial numbers or certain Modbus
protocol simulation errors) and thus was classified as a honeypot. On
the other hand, HosTaGe managed to respond successfully and hence
remain undetected.

Signature Generation

The last part of the evaluation focuses on the signature generation
mechanism and its effectiveness. That is, the applicability of the gen-
erated signatures is being examined.

The first goal is to generate multi-stage attack signatures. To achieve
this, a HosTaGe instance is manually attacked in a controlled environ-
ment. Such attacks can be easily injected by contacting the honeypot
via different protocols in a certain time window (see Section 5.2.5).

8 https://www.shodan.io

5.4 summary 83

Attacks are additionally captured by the network packet capture tool
Wireshark and saved for future reference (see below). Simultaneously,
HosTaGe detects attacks and constructs signatures from both the pro-
tocol and payload-level interaction (cf. Section 5.2.5.1).

For determining the applicability of the generated signatures, two
different tests are performed. First, the system is examined for false
positives and afterwards for true positives. All tests utilize publicly
available datasets of network traffic (in the form of pcap files). They
consist of synthetic and real network captures9, malware focused traf-
fic10, and honeypot captured traffic11

The first part of the evaluation is intended to determine whether
the generated signatures introduce false positives. For this, the sig-
natures are imported into the Bro IDS and the network traffic of the
(unmodified) test datasets is replayed. With respect to the definitions
in Section 5.2.5, a time-window of tw = 15 (minutes) is utilized for
all the experiments. As it was expected, the analysis showed no signs
of multi-stage attacks (false positives) detected by Bro.

Afterwards, each dataset is merged with the network traffic cap-
tured by Wireshark in the initial step (that includes the injected multi-
stage attacks). Subsequently, each modified network file is again re-
played while the Bro IDS is monitoring. In all cases, Bro successfully
detected all of the injected attacks without generating any false posi-
tives.

summary

This chapter introduced HosTaGe, a mobile honeypot. The proposed
system contributes in the areas of intrusion detection and alert gener-
ation in several ways.

HosTaGe is the first, low-interaction (see Chapter 2.2), honeypot in-
tended for mobile devices. In addition, the concept of honeypots-to-
go was introduced to support network administrators and regular
users to assess the security status of their networks. The honeypot is
also designed in a user-centric manner making it usable to a broad
audience, deviating from related work which targets only advanced
users.

Moreover, the honeypot provides the ability to emulate sophisti-
cated ICSs and detect targeted malware, e.g., Stuxnet. Furthermore,
HosTaGe formalizes the problem of attack detection and offers the
ability to also detect multi-stage attacks by correlating attacks from
the same source. To the best of the author’s knowledge, HosTaGe is
the first honeypot with such advanced correlation and detection ca-
pabilities (see Section 5.2.5).

9 Small and Big flows datasets: http://tcpreplay.appneta.com/wiki/captures.html
10 CTU-13 Dataset: https://stratosphereips.org/category/dataset.html
11 HoneyBot Dataset: http://www.netresec.com/?page=PcapFiles

84 hostage mobile honeypot

This chapter also touches the topic of honeypot evasion; the eval-
uation results show that honeypots must be designed carefully to
avoid detection. Lastly, the honeypot demonstrates advanced collabo-
ration capabilities by being able to distribute its alerts to either other
HosTaGe instances or to a central cyber-incident monitor (see Chapter
6).

6
T R A C I N G C Y B E R I N C I D E N T M O N I T O R

The previous chapter introduced a security mechanism for detecting
attacks and generating alert data. This chapter will complement and
provide additional support for the aforementioned contribution while
also contributing on alert data generation field in general. In partic-
ular, this chapter introduces and discusses TraCINg, a cyber incident
monitor. The purpose of this contribution is to first create a platform
for alert data generation and subsequently analyze the produced data
with a focus on correlated attacks. The remainder of this chapter is or-
ganized as follows. Section 6.2 provides a description of the system’s
architecture and a justification behind the various design choices that
were made. Section 6.3, gives insights and an analysis of the find-
ings for a real-world deployment period of five months. Section 6.4
summarizes and concludes this chapter. Finally, Figure 17 depicts the
overview of the chapter with regard to the overall thesis structure.

Open platform
for monitoring
cyber attacks

Collaboration
point for the

HosTaGe
honeypot

Statistics and
alert

correlation
algorithms

Figure 17: Overview of the Chapter and key contributions.

85

86 tracing cyber incident monitor

introduction

With the increase of cyber-attacks in both numbers and so-
phistication, it is becoming evident that advanced tech-
niques and mechanisms are required to identify new trends

and patterns in the adversaries’ strategies. This also implies that rely-
ing only upon traditional lines of defense, such as IDSs and dynamic
firewalls alone, would not be able to provide a holistic coverage on
detecting such novel and emerging patterns of attacks [172].

This chapter approaches the aforementioned challenges by propos-
ing and discussing the deployment of a cyber-incident monitor. Cyber
incident monitors are platforms utilized for supporting the tasks of
network administrators and for providing an initial step towards cop-
ing with large amounts of alert data. Furthermore, such systems can
have a rather diverse input flow, including, e.g., IDSs and honeypots.

As mentioned in Chapter 2, honeypots are systems whose value
lies solely in being probed, attacked or compromised [151]. They can
complement other detection mechanisms, e.g., IDSs, by providing a
more active and in-depth view on attackers’ activities. At the same
time, by definition, honeypots produce zero false positives and they
are able to detect even unknown and novel attacks.

Feeding honeypot alert data into a cyber-incident monitor provides
a number of significant benefits. As mentioned above, in contrast to
IDSs, honeypots do not produce false positives. Therefore, the secu-
rity administrator can focus on real attacks rather than speculating
from the observed results. In addition, detecting epidemic behavior,
e.g., malware spreading, becomes more likely when analyzing attacks
from several collaborating honeypots.

In essence, the inclusion of different types of alerts, i.e., from IDSs

and honeypots, increases the affluence of new data to be processed
by the administrators. However, due to the different focus and con-
tent of alerts generated by different systems, integrating these alerts
into a single platform, creates challenges. Cyber incident monitoring
systems are developed to overcome this problem by providing an
aggregation and visualization interface to unify the various alert gen-
erators into a single system that assists the user in making informed
decisions. Starting from a broad overview, users can decide to dive
into specific alerts to assess a particular reported cyber incident.

This chapter introduces TraCINg1, which stands for TU Darmstadt
Cyber Incident moNitor, an open-source centralized cyber incident
monitor that supports a number of different types of sensors. TraC-
INg is able to visualize attacks, provide statistics, present the geo-
location information of malicious users, and perform several other
user-centric operations. The design rational of the system is explained

1 https://www.tk.informatik.tu-darmstadt.de/de/research/secure-smart-
infrastructures/tracing-tud-cyber-incident-monitor

6.2 architecture of tracing 87

along with a discussion of initial results from a five month real-world
deployment period. Several interesting findings are shown in the re-
sults. First, many attack trends are identified, such as popular pro-
tocols and ports, the most persistent countries of origin, etc. Second,
as it will become evident in Section 6.3 even a relatively small de-
ployment of sensors, is adequate for detecting attacks manifested by
the same source on multiple sensors. This correlation between attacks
further motivates the need for collaboration between different moni-
toring points. In particular, the detection of targeted and distributed
attacks can be significantly improved by applying correlation and ag-
gregation algorithms on collaboratively generated sets of alert data.

architecture of tracing

In this section, a description of the architecture of TraCINg is pro-
vided, which includes four main parts: the TraCINg core, the sensors,
the GUI and the alert output. Figure 18 gives a high level overview of
the architecture of the system.

Figure 18: High level architectural view of TraCINg.

TraCINg Core

TraCINg is an open-source centralized cyber incident monitor that
obtains alert data from geographically distributed honeypot sensors.

88 tracing cyber incident monitor

The current proof of concept of the system exhibits sensors deployed
in three different continents, namely: Europe, Asia and the Ameri-
cas. TraCINg follows a classic client-server architecture and uses an
HTTPS server for receiving data securely. In addition, a Public Key
Infrastructure (PKI) allows for the authentication of the sensors so
that only certified sensors can send data to the system.

database All the received alert data is saved in a database that al-
lows for further processing and analysis. For these purposesMongoDB
was chosen as besides various interesting properties (e.g., support a
high “write” load, location-based support for spatial data) it also sup-
ports dynamic querying and provides reasonable scaling [24].

statistics , correlation and aggregation The statistics along
with the correlation and aggregation modules are responsible for ana-
lyzing the alert data. This varies from simple statistical functions, e.g.,
creating tables of “top” attacked ports and protocols, identifying the
most common countries that are utilized by adversaries, to more so-
phisticated correlation algorithms. For the latter, the reader may refer
to Section 6.3.3.

pra protection Lastly, the Probe Response Attack (PRA) protec-
tion module of TraCINg applies novel techniques for the detection
and mitigation of a specific type of attack that can result in the identi-
fication of the (network) location of the sensors. The reader can refer
to Chapter 10 for a detailed description of the deployed PRA detection
and prevention algorithms.

GUI

All the gathered alert information is available to the security adminis-
trators and users via a user-centric GUI with different types of views
(two of them depicted in Figure 19) and functions, e.g., the visual-
ization of statistics, on-demand detailed information, live and replay
mode of the alert data, etc. The front-end, written in node.js [163], sup-
ports the integration of, e.g., OpenStreetMap [66] for the visualization
of attack origins and targets (cf. Figure 6.19(b)) and VirusTotal [164]
for obtaining additional information on identified malware. This lat-
ter property of supporting checks via the VirusTotal is particularly
useful for quickly examining malware that were detected by the sen-
sors.

Sensors

TraCINg supports and utilizes sensors that can be distinguished into
two main types: stationary honeypots and mobile honeypots. Here, a

6.2 architecture of tracing 89

(a) The default TraCINg view.

(b) OpenStreetMap integration in TraCINg.

Figure 19: GUI examples of TraCINg.

short discussion of these types of sensors is given along with some
implementation-specific details.

Stationery Honeypots

In contrast to mobile honeypots, stationery systems refer to honey-
pots that are static. As this is the most common type of honeypots
TraCINg allows for their support with the only requirement being a
certain alert formatting (see Section 6.2.4).

The current proof of concept of the system utilizes dionaea2, a widespread
low-interaction honeypot [147]. Dionaea honeypots are used in two
different ways. First, honeypot instances are deployed on regular ma-
chines, i.e., Virtual Machines (VMs), as well as Raspberry Pis. This
allows for an easy copying of systems, to be able to reuse them, and
introduces convenient plug-n-play support for the sensors.

2 http://dionaea.carnivore.it

90 tracing cyber incident monitor

Second, dionaea sensors can be also deployed as cloud instances.
This is important for being able to monitor attack traffic that may
be specific to geographical regions. Thus, via the utilization of cloud
providers, it was possible to deploy our sensors in different conti-
nents. Furthermore, cloud services provide resilience and uptime re-
liability for our sensors which ensures uninterrupted monitoring.

Mobile Honeypots

TraCINg also provides support for obtaining data from mobile hon-
eypots, and specifically from HosTaGe as described in Chapter 5. The
reader can refer to the aforementioned chapter for more details. At
a glance, HosTaGe is a honeypot for mobile devices for detecting
malicious wireless network environments. The driving idea behind
HosTaGe is that mobile honeypots can detect local threats before they
become global; subsequently, this provides the possibility of respec-
tively mitigating such threats.

In addition, the combination of the collaboration techniques of HosTaGe
and the alert synchronization with TraCINg, creates additional bene-
fits for the users. First, one user can learn from others about the global
security status of wireless networks in their city, or country. Moreover,
the diverse data that is sent to TraCINg can also provide with valuable
and more accurate input for the detection of correlated attacks and
latest trends from the behavior of malicious users and malware.

Alerts

TraCINg supports input from any type of honeypot or IDS, with the
only restriction being to utilize the respective input interface for the
submitted alerts. Sensors need to convert their alerts into a defined
JSON3 format that is being supported by the input interface. There-
fore, it is straightforward to add support for other honeypots. For
instance, to enable TraCINg support for the dionaea honeypot, the
respective alert export functionality was implemented as an internal
dionaea module.

Another important aspect is the frequency of the exchanged alerts.
In the current version of the system, alert data is sent instantaneously
upon the detection of an attack by the honeypot to TraCINg, except for
HosTaGe honeypots in which, the exchange frequency is determined
by the user or by the respective auto-upload functionality. Take note
that the frequency of the exchanged alerts could also lead to some
attacks on the sensors (cf. Section 10 — Probe-Response attacks).

The generated alerts that are submitted to TraCINg contain the fol-
lowing attributes:

• Time-stamp: The date and time specifics of an attack.

3 http://www.json.org

6.3 alert data analysis 91

• Id: A unique identifier for each alert.

• Sensor Type: A field that differentiates between different honey-
pots, e.g., dionaea, HosTaGe, etc.

• IP: The source and destination IP address of attacks (this infor-
mation is excluded from the perspective of the end-users, i.e.,
from the GUI, to maintain privacy).

• Ports: The source and destination port of attacks.

• Attack type: The type of the detected attack, e.g., a portscan, a
shellcode injection, etc.

• Geo-location Information: The geo-IP information, and the name
of the city and country.

• Authorization Status: A boolean id that indicates whether a sen-
sor possesses a signed certificate from the main TraCINg Certificate
Authority (CA) via the usage of a PKI.

• MD5 hash: The MD5 hash of the malware collected from a hon-
eypot (if applicable).

• Log: Whenever possible, the whole communication between the
attacker and the sensor is logged, and can be presented to the
user on demand.

alert data analysis

In this section, the results of the deployment of TraCINg for a five
month observation period (March to July 2014) are presented. Initially,
the details of the system’s setup are given. Afterwards, the analysis of
the alert data is conducted in a twofold manner. First, basic statistics
are examined and discussed (see Section 6.3.2). Second, a similarity-
based alert correlation algorithm is applied to the data and the results
are discussed (see Section 6.3.3).

The purpose of this section is not to formally evaluate TraCINg.
Rather, the driving idea is to highlight the richness of data that can
be gathered by such a system as well as the depth of knowledge that
can be gained by analyzing them. Complementary to the aforemen-
tioned reasoning, this section provides the reader with a discussion
of “lessons learned” from the deployment of a fully functional cyber
incident monitor for a long period of time. In fact, the results (particu-
larly the ones related to correlated attacks) further motivate the need
for collaborative intrusion detection. Lastly, various attack trends can
be identified by such an analysis (e.g., the rise of IoT-related attacks).

92 tracing cyber incident monitor

System Setup

During the analysis period, data was collected from five different
honeypots that were continuously monitoring and sending alerts to
TraCINg. The specifics of the deployed sensors are summarized in
Table 7. In more details, two sensors were located in Malaysia within
a /24 sub-network. In addition, two sensors were deployed as cloud
instances in USA within different /8 networks. Finally, one sensor
was deployed in Greece.

Sensor Name Country Common Subnet Prefix

MY-01 Malaysia
/24

MY-02 Malaysia

USA-01 USA
/8

USA-02 USA

GR Greece -

Table 7: Sensor description and geographical information in TraCINg.

For the analysis of the data, the evaluation is restricted to the sta-
tionary deployed dionaea honeypots only. Data gathered from the
mobile honeypots was not taken into account for two reasons. First,
the number of users making use of the mobile honeypot, at the time
of the analysis, was low and second the frequency of utilization of
the honeypot was not consistent4. Thus, this could introduce bias into
the analysis. Nevertheless, the study shows that even with a relatively
low number of sensors, a large amount of distributed and correlated
attacks can be detected.

Data analysis

In total, TraCINg sensors recorded 898, 570 alerts during the exam-
ined period, from 30, 101 distinct IP addresses, having their origin
in 146 different countries5. It is interesting to note that attacks from
USA and China alone, represented about 80% of the total number of
alerts recorded by our system. Nevertheless, the conducted analysis
suggests that this observation is not influenced by the geographical
location of the deployed sensors.

4 A preliminary analysis of more recent, yet scattered, data gathered from the utiliza-
tion of HosTaGe mobile honeypots, between March and May of 2015, is as follows.
Approximately 1000 alerts were sent from four different countries (i.e., Germany,
United Arab Emirates, Italy, and Columbia). At a glance, 62% of the attacks were
shellcode injection, 24% were targeting the TELNET protocol, 6.6% were targeting
HTTP, and finally 4% were MySQL brute-force attacks.

5 It is, however, assumed that the adversaries do not make use of IP address spoofing
techniques.

6.3 alert data analysis 93

Attack Description Total Number of Attacks

Portscan 507,571

MySQL Attacks 156,960

Transport Layer Attacks 116,414

VoIP Attacks 84,641

SMB Attacks 30,239

MS SQL Attacks 2,325

Shellcode Injection 420

Table 8: Most popular attack types and the corresponding number of occur-
rences in a 5 month period of TraCINg deployment.

Port Protocol/Service
Number

of Attacks

135 RPC 24,667

139 NetBIOS 20,249

23 Telnet 11,058

80 HTTP 10,735

445 SMB 9,294

443 HTTPS 3,400

25 SMTP 2,558

21 FTP 1,658

110 POP3 1,153

143 IMAP 597

Table 9: Top 10 attacked ports and protocols in a 5 month period of TraCINg
deployment.

Table 8, presents a summary of the most popular attack types along
with the number of attack occurrences. The attack description column
of the table depicts the specifics of the attacks. In this case MySQL, MS
SQL, VOIP, and SMB refer to malicious activity specific to these proto-
cols, e.g., a brute-force attack. Moreover, the Transport Layer describes
cases in which the adversary connected to a port, but no further ac-
tivity was possible due to honeypot-related limitations, e.g., dionaea
not being able to handle the connection. With respect to dionaea’s
VOIP emulation capabilities [183], the majority of the detections were
brute-force attacks and scans conducted with tools such as SipCli6.

In addition, Table 9 shows the most targeted ports and protocols. A
number of findings come as a result of this analysis. First, around 56%
of the total attacks were portscans. This can be considered as some-

6 SipCli VoIP audit tool: http://www.kaplansoft.com/SipCli

94 tracing cyber incident monitor

Figure 20: Graph representation of the alert data: attackers clustered close to
their main targets and single-dimensional correlation (cf. Section
6.3.3.1) seen as edges connecting to neighbor clusters.

thing that is expected, especially with the rise of open source Internet-
wide network scanners, e.g., ZMap [42]. In addition, it should be
noted that bias can be introduced from such tools when utilized
by researchers. Nevertheless, we consider this insignificant with re-
gard to the overall analysis. Second, most of the detected MySQL
attacks were brute-force attacks using default user-names and pass-
words. The most prominent one being a combination of root as a user-
name along with a blank password. Moreover, Table 9 indicates that
several attacks targeting Windows OS specific protocols and services,
e.g., the MS-RPC, and NetBIOS, are still prominent. This also con-
firms that several old worm variants, e.g., Conficker [142], still hold
an imposing position in the overall attack propagation scene. Lastly,
a further analysis of the data suggests that a number of the attacks
that were targeting the Telnet protocol were conducted by insecure/in-
fected embedded devices, e.g., IP web-cams.

Correlation of attacks

Correlated attacks can be classified by differentiating between single-
dimensional and a two-dimensional correlation of attacks, by following
a similarity-based strategy [47]. Single-dimensional correlation groups
attacks with the same origin, e.g., the same source IP address. Thus,
it can be defined as the set of alerts originating from the same source
IP address that target more than one sensor throughout the observed

6.3 alert data analysis 95

period of five months. Two-dimensional correlation includes time as
an additional parameter, i.e., it takes into account attacks that are
observed within a specific time window and originate from the same
adversary. The rationale behind the inclusion of time is twofold. First,
a large portion of IP addresses is dynamic and hence adversaries may
change IP addresses over time. Second, most of the attacks, nowadays,
are conducted in a rather short-time frame.

Single-dimensional correlation

The analyzed dataset can be modeled as a directed graph G = (V ,E),
where the set of nodes V represent all IP addresses involved in the
detection process, i.e., both sensors and malicious users. The origin
and the target nodes of an attack, are represented as a set of directed
edges (u, v) with u, v ∈ V , that exist between the nodes.

Figure 20, is a representation of the alert dataset, that depicts two
major findings: attack origins can be clustered, by vicinity, into three
clusters and the single-dimensional correlation can be seen as the
edges that connect to neighboring clusters. Specifically, the dataset
was transformed to a directed graph with 30, 106 nodes representing
all distinct IP addresses (both sensors and malicious users), while
edges correspond to the respective connections, i.e., adversaries con-
necting to the sensors. Figure 20 depicts, at a glance, an overview of
the activities in our dataset.

The five different sensors (differentiated by distinct colors) con-
verge into the three main clusters. The clustering is done based on
the geo-location information of the sensors (cf. Section 6.3.1). As such,
from the five deployed sensors, four of them were coupled into clus-
ters of two. This is also explained in the system setup description
in Section 6.3.1. The Malaysian sensors (within a /24 network) cre-
ate tightly coupled clusters due to the high percentage of common
attackers. In addition, the two sensors that are located in the USA,
even though having distinct /8 networks, are also close to each other.
Figure 20 also clusters the attackers based on the intensity of the
alerts/attacks observed originating from them, i.e., nodes are placed
closer to the sensors they attacked intensively. Moreover, single-dimensional
correlation is observed when edges of a cluster (same color) are con-
necting to neighboring clustering groups, i.e., in the case when an
adversary targets multiple sensors.

A similar analysis, from another perspective, on the ratio of single-
dimensional correlation is shown in Figure 21. In more details, the
figure depicts the relationship between the percentage of unique at-
tackers and the targeted sensors. Almost 50% of the total number of
attacks target at least two different sensors, during the five month
period under investigation. However, a portion of this finding can
be attributed to the ’closeness’ of two sensors, i.e., sensors located
within the same /24 sub-network. Nevertheless, as it is discussed in

96 tracing cyber incident monitor

the following section, even with the inclusion of time as a parame-
ter, an almost continuous attacking behavior is observed on multiple
sensors simultaneously.

1 2 3 4 5
No. of Targeted Sensors

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
 o

f
U

n
iq

u
e
 A

tt
a
ck

e
rs

Figure 21: Ratio of unique attackers targeting multiple sensors in TraCINg.

Two-dimensional correlation

In single-dimensional correlation, the basis for the analysis is exclu-
sively based on the source IP address of the adversaries. While this
is reasonable, the time-frame in which attacks take place can also
be taken into account. Such a temporal-based similarity correlation ap-
proach is based on the assumption that malicious behavior that is
caused by the same adversary is likely to be observed in a short time-
frame [138]. This approach comes with the advantage of being highly
effective on detecting similar attacks, on connecting/aggregating at-
tacks (and thus reducing the total number of alerts) and has been
examined by several researchers (e.g., [2, 97]).

Figure 22, presents the number of unique attackers targeting mul-
tiple sensors within a short time frame. In more details, this two-
dimensional correlation is measured with a sliding window of one
hour (measurements taken every 30 minutes). The rationale behind
the selection of these time intervals is that the system is utilizing hon-
eypots, which assume any incoming connection as an attack. Hence, a
single-dimensional correlation could detect attacks that are the result
of regular probing (e.g., researchers that take Internet-wide measure-
ments) and thus introduce false positives.

6.3 alert data analysis 97

0 720 1440 2160 2880

Interleaving Timeslots

1

2

3

4
N

o
.

 o
f

U
n
iq

u
e
 A

tt
a
ck

e
rs

3 Distinct Sensors

4 Distinct Sensors

5 Distinct Sensors

Figure 22: Unique attackers in TraCINg within a sliding window of one hour
and with measurements taken every 30 minutes.

In fact, the 30 minutes time interval takes into account the state
of the art in IPv4 network scanning. As of now, one of the fastest
Internet-wide scanners, ZMap, is able to scan the IPv4 address space
in approximately 45 minutes (via a random cyclic selection of IP ad-
dresses) [42]. Thus, with the chosen time interval the correlation al-
gorithm attempts to reduce bias introduced by researchers’ activities
utilizing such mechanisms.

Note that for the sake of clarity, vertical jitter was applied to the
points in the plot. Moreover, the figure was restricted to only two
months (May to July 2014) of the overall period. Nevertheless, sim-
ilar activity was observed for the removed time-frame. Throughout
the observations, a pattern of attacking behavior can be identified in
which, at least one unique attacker is targeting three or four different
sensors (within a 30 minutes observation window).

Furthermore, there are also cases in which, up to four different
adversaries targeted three sensors. Events like this, can indicate the
discovery of a new vulnerability and thus the possibility of extensive
scans over the Internet for exploitable insecure systems. The majority
of two-dimensional correlation of alerts refers to portscans. In addi-
tion, for the cases of three and five overlapping sensors, also MySQL
and VOIP brute-force attacks were detected.

98 tracing cyber incident monitor

summary

The previous chapters of this thesis already motivated the need for
novel mechanisms to detect adversaries, and to generate and handle
alert data. This chapter interconnected these two requirements of gen-
erating data and being able to handle them in a practical manner.

In more details, this chapter presented TraCINg, a cyber-incident
monitor that is driven by honeypot sensors. The proposed system con-
tributes to related work by offering an open source platform for study-
ing cyber-attacks in a wide spectrum. TraCINg can assist researchers
for examining alert data correlation algorithms and perform analysis
of the alert data to identify novel attack trends and/or the propaga-
tion of malware. Moreover, the system provides a collaboration point
for the HosTaGe mobile honeypot (cf. Chapter 5).

TraCINg also provides the ability to experiment in other areas of
collaborative intrusion detection. In particular, as it will be shown
later in this thesis, such a platform can be ideal for experimenting
with probe-response attacks. Recently research has been conducted
[143, 145, 27] that focuses on methods that can be utilized by attackers
to successfully detect monitoring sensors that publish their findings
publicly via the Internet. This thesis contributes in the area of probe-
response attacks with the aid of TraCINg. The reader can refer to
Chapter 10 for an in-depth discussion of probe-response attacks.

7
I D 2 T: A N I N T R U S I O N D E T E C T I O N D ATA S E T
C R E AT I O N T O O L K I T

Chapters 5 and 6 dealt with the topic of alert data generation via the
detection of genuine attacks. This chapter attempts to cope with the
topic from the perspective of synthetic alert data generation.

In particular, this chapter discusses the topic of dynamic intrusion
detection datasets generation by proposing ID2T, a concept and sys-
tem for the creation of such realistic datasets. First, Section 7.2 pro-
poses a number of requirements towards high quality datasets and
dataset generation tools. Moreover, Section 7.3, provides an extensive
discussion of the proposed approach by giving insights regarding the
architecture, the attack generation mechanisms, and the GUI of the
system. Section 7.4, presents the results of the evaluation of the ID2T

prototype with a focus on the performance of the toolkit as well as
the quality of the produced datasets. A further discussion of the out-
come of the evaluation along with existing limitations of the system
and further steps, are given in Section 7.5. Section 7.6 concludes this
chapter. Finally, Figure 23 depicts the overview of the chapter with
regard to the overall thesis structure.

Realistic
synthetic dataset

generation

Proof of
concept

evaluation

Requirements
for alert data

generation

Figure 23: Overview of the Chapter and key contributions.

99

100 id2t : an intrusion detection dataset creation toolkit

introduction

In the previous chapters the thesis contributed in the area of alert
data generation by introducing approaches that operate with a
logic of detecting real attacks and afterwards gathering the re-

spective alert data. However, such a logic is not always appropriate
as it cannot provide a generic method for generating usable alert
datasets. In this context, a common problem that researchers have to
confront with, is identifying valid and commonly accepted datasets
for evaluating their proposals [79].

In fact, this difficulty of discovering generally acceptable, compa-
rable and publicly available alert datasets has not been tackled yet.
That is, there is no commonly accepted dataset that one can use for
the purposes of evaluating an intrusion detection algorithm or system.
This generates several challenges when assessing novel work in the
area of IDSs. First, in many cases researchers utilize significantly old
datasets, e.g., the DARPA 1999 [92] dataset. Even though this dataset
was considered a standard in the past, this is not the case any more
as a lot of concrete work has criticized it. Moreover, in other cases
many systems are evaluated with non-publicly available datasets. In
such a case other problems arise, such as the reproducibility of the
presented results.

This chapter proposes ID2T, a dataset generation toolkit that is in-
tended for the evaluation of IDSs. As it is depicted in Figure 24, ID2T

takes as input network traffic files (of an arbitrary size), injects net-
work attacks and generates a labeled dataset. The toolkit is envi-
sioned to be able to assist researchers to, out of the box, generate
comparable datasets and hence publish acceptable and easily repro-
ducible results. In addition, ID2T also aims on being practically used
in real-world networks, e.g., corporate networks, for creating highly
tailored datasets for the evaluation of the intended internal security
mechanisms. In this context, the toolkit and the code for its prototype
are being published publicly [118] so that the research community
can be of benefit. The performance of the ID2T prototype is evaluated
by first showing that the system can handle large amounts of network
traffic as input. Furthermore, specific properties of generated datasets
are examined to assess whether they contain artifacts.

requirements

This section proposes functional and non-functional requirements, for
tools and their generated datasets, which aim at becoming useful for
the evaluation of intrusion detection systems and algorithms. Lastly,
the section also touches on the meaning and importance of quality, a
non-functional requirement, in the context of creating datasets with
automated tools.

7.2 requirements 101

ID2T

Input
(network files)

Output
(labeled dataset)

Figure 24: High level overview of the ID2T concept.

Requirements can be split into the functional and non-functional
classes respectively. Both categories are discussed in the following. In
addition, a special non-functional requirement, namely dataset qual-
ity, is further discussed in this section.

Functional Requirements

Functional requirements relate to certain practical properties of a
dataset generation tool, its output dataset or both.

• Payload Availability: The payload of packets needs to be in-
cluded in the generated dataset. This is important for its usabil-
ity, as this information is often required for intrusion detection
algorithms to work properly. Note that in many cases the pay-
load is removed from datasets due to the need for anonymiza-
tion.

• Attack Diversity: The dataset or tool must contain a broad range
of attacks that span from traditional network attacks, e.g., port-
scans, to up to date and novel malicious activity, e.g., a sophis-
ticated malware.

• Labeled Data: The generated dataset needs to contain clearly
identified labels of the malicious traffic.

• Ground Truth: Besides labels the dataset should be able to guar-
antee the absence of attacks or anomalies in the labeled as non-
malicious data. Usually this can only be achieved via a synthetic
dataset generation.

102 id2t : an intrusion detection dataset creation toolkit

Non-Functional Requirements

As the name implies, non-functional requirements refer to the prop-
erties of the generated dataset, the toolkit that influences the quality
of the produced dataset, or both.

• Availability & Reproducibility: The generated datasets must be
publicly available and hence allow the reproducibility of exper-
iments.

• Scalability: The toolkit for generating datasets should be able to
handle as input, and also produce as an output, network files
of arbitrary size.

• Interoperability & Flexibility: The toolkit needs to provide the
user with a method, e.g., templates or an API, for creating new
attacks or modifying existing ones.

• Quality: In the case of synthetic dataset creation, the attack gen-
eration process is required to actively avoid introducing unde-
sired patterns, or artifacts, outside the scope of an attack. This
requirement is further discussed in the following.

Dataset Quality

Many intrusion detection datasets (see Chapter 2.3) have had prob-
lems due to the injection of inadvertent patterns which are easy to
recognize by pattern recognition techniques. Several such artifacts
have been identified which should be addressed whenever two un-
related network packet capture files are merged as one or when a
packet capture file is altered. The following list of defects, or artifacts,
is non-exhaustive and only reflects the main sources of problems that
were identified during the conducted experiments or by examining
the related work [106, 101, 102].

• TTL Value Distribution: Due to the different connectivity charac-
teristics of individual networks, the distribution of TTL Values
varies. The distribution of TTL values must be replicated to avoid
creating easy avenues of detection for learning algorithms.

• Packet Capture Time Record: Depending on many factors, such
as the bandwidth and the number connected hosts, packets cap-
tured in a network are recorded with different time characteris-
tics. Bursty or constant packet rates should be imitated as well
as the distribution of packet inter-arrival times.

• Packet Checksum: It is not sufficient to only modify desired
values in network packet capture files. It is crucial to recompute
checksums wherever appropriate.

7.3 id2t 103

• IP Address Distribution: Depending on the network, IP addresses
are usually concentrated between specific address ranges. In-
jected or modified packets should use IP addresses from the
same regions of concentration.

• Network Link Reliability: Due to the nature of networks, it is
common to lose packets due to a saturated link or exhausted re-
sources. It is important to identify these problems and replicate
them when appropriate.

A further discussion of the aforementioned requirements is given
in the evaluation section of the ID2T prototype (cf. Section 7.4) as well
as in the discussion section (cf. Section 7.5). Furthermore, for a dis-
cussion of the related work in the area of intrusion detection datasets
the reader may refer to Chapter 2.3

id2t

This section first discusses the architecture of the proposed approach,
and subsequently gives insights on the attack generation modules of
ID2T. In addition, it provides with a brief description of the implemen-
tation of the ID2T prototype.

Architecture

Figure 25, depicts an overview of the architecture of the system. With
respect to the core part of the toolkit, there are four internal modules
that react to user input for creating labeled datasets: the statistics, the
packet splitter, the attack controller and the merger.

Input

Parameter
Selection

GUI
Attack

Controller

Statistics

Splitter

Merger

Attacks

Output

Figure 25: A high level view of the ID2T Architecture.

104 id2t : an intrusion detection dataset creation toolkit

The statistics module is responsible for calculating statistics required
by the attack controller module to replicate the quantitative and qual-
itative characteristics of the input. It is also connected with the GUI,
in the sense of providing the user with an overview of the calculated
information with regard to the input network file.

The packet splitter module is responsible for processing large net-
work files by splitting them into smaller chunks, thus allowing an
effective processing of network files. This splitting process can be
achieved by utilizing two different parameters, seconds and packets.
That is, the user can choose to split the input file with respect to a
predefined parameter of seconds or similarly per number of packets.
In addition, the module is envisioned to support various network file
formats, e.g., pcap, pnpcap, and tcpdump.

Attacks are modeled utilizing a framework provided by the attack
controller module. As this is one of the core parts of ID2T it is discussed
in details in the following (cf. Section 7.3.2).

Lastly, the packet merging module receives the network packets cre-
ated by the attacks and merges them with the previously split input
files. The module also provides the user the flexibility to select be-
tween the various generated attacks. After the malicious files of in-
terest are specified, the merger combines them with the input dataset.
During the merging process all the packets are chronologically sorted
and stored as a single file, thus, representing a realistic evaluation
dataset; a labeled dataset, accompanied with useful visualizations for
understanding the injections, is the final result of the process.

Attack Generation

ID2T is able to generate attacks by utilizing two different techniques,
namely script-based attack generation and pcap modification. The first
one aims on generating attacks, based on python scripts, in which
all consecutive packets share similar parameters (e.g., a DoS attack).
The pcap modification technique functions by modifying available or
user-captured pcap files, e.g., traffic generated by a specific malware.
In the following, more details are given for each technique.

Script-based Attack Generation

The main idea behind programmable generation is that many cyber-
attacks can be essentially modeled as a large number of packets with
similar parameters, that utilize the same protocol. For instance, in the
case of a DDoS attack, such a large number of packets would exist that
make use of a certain protocol (e.g., TCP), originating from a plethora
of IP addresses, and targeting one IP address. Hence, many attacks
can be modeled in such a way, and can be practically implemented in
ID2T via the creation of the corresponding template (that includes the
specification details of input parameters).

7.3 id2t 105

Moreover, implementing new attacks is a straightforward process;
the only precondition is to follow a class-template style, that ID2T

makes use of, and the toolkit will include the new attack automat-
ically. However, attacks that include several protocols and a large
amount of parameters and parameters cannot be effectively repre-
sented with such a technique. To cope with this, ID2T can utilize the
pcap modification mechanism as described in the following.

PCAP Modification

In contrast to the script-based attack generation, the pcap modifica-
tion offers a technique that is suitable for more complicated attacks.
For example, this may refer to attacks that make use of multiple pro-
tocols, and/or include specific payloads. The first requirement for
this injection technique is the existence of a pcap file that contains
the traffic generated during such an attack. Such a case can be, for
instance, a pcap file that includes the traffic generated by a specific
malware. The user can either acquire such files from publicly avail-
able databases (e.g., from VirusTotal1) or create his own. When such
a network file is available, the user can provide the system with spe-
cific parameters (e.g., the preferred malicious IP addresses) that will
be used in the newly injected attack. Subsequently, ID2T makes use of
certain functions, provided by the Scapy [14] network packet manip-
ulation tool, to adjust parameters with respect to the user input. The
outcome of the overall procedure is a new network file that includes
the malicious traffic but with updated parameters. The merger mod-
ule of the toolkit is able to take such a file as input and inject it to the
original file given by the user.

ID2T Proof of concept

The prototype for ID2T has been implemented in Python. The GUI,
as depicted in Figure 26, is responsible for visualizing all necessary
elements of the ID2T.

In the current version of the prototype the procedure for generat-
ing a dataset follows three steps. First, the user specifies the input net-
work file that will be used as the basis (ground truth) of the dataset
generation. The statistics module will parse the data, will generate in-
formation with respect to the input and compute various parameters
(e.g., the TTL distribution) that will be utilized in the next steps. Af-
terwards, the user can decide, via the attack generator, which attacks
should be injected in the original network file. When this is decided
and the respective parameters are given, the toolkit will generate an
attack file. Note that the system is making use of information gath-
ered from the first step to create realistic attacks. For instance, the

1 https://www.virustotal.com

106 id2t : an intrusion detection dataset creation toolkit

TTL distribution of the network is taken into account so that the in-
jected packets appear to be similar, while other information, such as
the injection time, is properly randomized.

With respect to the labeling of attacks, the prototype is utilizing the
MAC addresses as a marker. That is, the user can specify the MAC
addresses of the adversaries to have the same unique value. Finally,
ID2T will produce the final output, that is a labeled dataset in the form
of a network pcap file. Afterwards one can easily identify the injected
malicious behavior by checking the respective MAC address values.

Figure 26: GUI view of the ID2T prototype.

With regard to the attack generation the prototype already imple-
ments several attacks. In more details, resource exhaustion attacks
such as the Ping of Death (PoD), a TCP-SYN DoS and a TCP-SYN DDoS

have been implemented with the script-based attack generation tech-
nique. Similarly, a number of port-scan attacks are also offered. Fur-
thermore, two malware attacks can also be utilized (representing the
Angler malware and traffic generated by the Aurora exploit) by mak-
ing use of the pcap modification mechanism.

evaluation

The ID2T prototype will be evaluated in a twofold manner. First, the
performance of the toolkit is examined in terms of its ability to han-
dle network files of arbitrary size. Afterwards, an attempt to evaluate
the quality of the generated datasets is made, by examining common
mistakes and criticisms of other synthetically created datasets as dis-
covered in the related work.

7.4 evaluation 107

Performance Evaluation

For an intrusion detection dataset toolkit to be practically usable, it
is important that it can efficiently handle large network files as input.
In the following, three different experiments are conducted that focus
on the parameters and properties that can influence the performance
of ID2T. In particular, the following measurements are emphasizing
on the size of the network input file, the time required for the gen-
eration of packets (to be injected in the original file), and lastly the
time required for the merging process (between the input file and the
attack packets).

Figure 27, depicts the time required for the statistics module to per-
form its functions into large network files. For this, real-word traffic
files were used, taken from the MAWI dataset [52]. The maximum
utilized dataset size in the experiment, i.e., 13GB, corresponds to one
day of traffic data from the MAWI dataset. Therefore, such a file size
can be considered a reasonable upper bound for the usability of the
toolkit. As one can notice, the toolkit is able to handle large datasets
in a reasonable time window.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 5 13

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

se
co

n
d

s)

Dataset Size (GB)

Figure 27: Performance of the statistics module for different dataset sizes.

Likewise, Figure 28 depicts the attack generation time required for
the injection of attacks with respect to the number of generated and
injected packets. In particular, the generation time, for the TCP-SYN
DoS and DDoS as well as the PoD attack, is examined. The results sug-
gest that the prototype is able to effectively perform the injection even
when a very large number of packets is injected.

Furthermore, Table 10 shows four different experiments, each of
them conducted with various input datasets (background data) and
injected attacks. For the first three, a 2GB slice of the MAWI dataset
[52] was used, while the last (fourth) assessment is based on 13.8GB

108 id2t : an intrusion detection dataset creation toolkit

200

400

600

800

1000

10,000 100,000 500,000

Co
mp

ut
at

io
n

Ti
me

 (
se

co
nd

s)

Number of Generated Packets

DoS
DDoS
PoD

Figure 28: Attack generation time with respect to the number of generated
packets.

of data from the same dataset. In the first experiment the 2GB back-
ground data is merged with 500, 000 TCP SYN packets and 1, 024 Port
Scan packets. The second assessment is similar to the first one, but
it adds additional 2,724 packets of the Angler malware. The last 2GB
merging evaluation uses the four captures similar to the previous two
scenarios, but also adds 6, 704 packets of the Aurora exploit. Finally,
for the 13.8GB input dataset all four previous attacks are merged and
utilized. In all cases the timestamps of the attacks have been modified
so that they fit the time of the input dataset. As a result of the merging
process we observe a non-linear increase in the computation time, but
still providing reasonable timing for such large network data files.

Input Dataset

Size

TCP SYN

(packets)

Port Scan

(packets)

Exploit 1

(packets)

Exploit 2

(packets)

Total Time

(seconds)

2GB 500,000 1,024 - - 19.884

2GB 500,000 1,024 2,724 - 20.156

2GB 500,000 1,024 2,724 6,704 20.638

13.8GB 500,000 1,024 2,724 6,704 199.128

Table 10: Overall merging performance of ID2T for various datasets and at-
tacks.

Artifacts Avoidance

It is of high importance that parameters that may introduce artifacts
to the output dataset are properly generated. In the following, such
parameters are examined along with a discussion on how ID2T at-
tempts to avoid the generation of such artifacts.

7.4 evaluation 109

TTL Distribution

It is important to take into consideration the TTL distribution of a net-
work before injecting attacks into it. Hence, for examining the quality
of the TTL distribution of ID2T and how realistic it is, the outcome of a
dataset generated is examined when the input dataset is originating
from the the MAWI dataset [52].

In more details, Figure 29 depicts a TTL distribution comparison of
the MAWI dataset and the respective ID2T dataset when taking as
input this dataset. As one can observe, the statistics module correctly
derived the TTL distribution of the input file and hence the toolkit
generated a dataset that closely follows such a distribution.

1M

2M

3M

4M

5M

32 40 48 56 64

Nu
mb
er
 o
f
pa
ck
et
s

MAWI Dataset TTL distribution

1M

2M

3M

4M

5M

32 40 48 56 64

ID2T DDoS TTL distribution

Figure 29: TTL distribution comparison of the MAWI dataset and ID2T.

Consecutive Packets Time

In a real world network, packets can take different paths which can
be dictated by the routing information or the load of routing devices.
Similarly, some packets might be dropped or lost and thus never
reach their final destination.

Therefore, such network communication characteristics are exam-
ined, on the basis of ID2T, by modeling the time between two consec-
utive packets. Ideally, the time between consecutive packets (∆ time)
should follow a burst behavior in which large number of packets
are sent and respectively received in a short time range. Addition-
ally, there should be distinct time periods with slight packet delays
to mimic network congestions or other communication issues.

Figure 30: Modeling time between two consecutive packets with a 10 p/s
rate.

110 id2t : an intrusion detection dataset creation toolkit

Figure 30 depicts the case of the ∆ time for 1000 consecutive packets
of a TCP-SYN DoS attack generated by ID2T in which a packet rate of
10 packets per second is selected. This implies that the time distance
between 10 packet timestamps should be approximately one second.
To achieve this ID2T makes use of various randomization functions via
its discrete probability distribution sub-module (inside the statistics
module). Similarly, Figure 31 presents the same ∆ time for a DoS at-
tack but with an increase packet rate of 100 packets per second. Both
experiments suggest that the consecutive packet time distribution has
similar characteristics to the ones of a real network.

Figure 31: Modeling time between two consecutive packets with a 100 p/s
rate.

Packet Head Checksum Calculation

The packet integrity of many protocols, e.g., IP and TCP, is protected
by the usage of checksums. Such checksum calculations are impor-
tant in the context of a synthetic dataset generator as inconsistencies
can introduce significant artifacts. For instance, such a case was dis-
covered by [102] with regard to the DARPA dataset and particularly
with the tools utilized for generating attacks. As a result, in such a
scenario anomaly detectors can differentiate between normal and ma-
licious traffic by identifying such inconsistencies in the checksums.

To overcome such problems, checksum values are computed in-
stantly when attacks are injected into a network file. In other situa-
tions such as pcap capture modification, where packet header infor-
mation has to be forged according to user-defined parameters, an-
other approach is taken. As the checksum is related to the packet’s
header data, any alternation in it will lead to changes in the respective
checksum value. Therefore, ID2T recalculates the checksums of every
packet that has been modified. In this context, packets containing in-
correct IP and TCP checksums have been manually injected into pcap
files. Afterwards, these files are given as an input to ID2T and attacks
are injected. The output was thoughtfully checked with Wireshark
[119] and did not contain any incorrect IP or TCP checksums.

7.5 discussion 111

IP selection and distribution

During the injection of attacks, the generation of source IP addresses,
their distribution and randomization are of high importance to be
able to create realistic datasets. ID2T handles this by first modeling
the user input (i.e., the given pcap file), and suggesting proper values.
In addition, the toolkit offers the ability to add different weights of
occurrences for certain IP addresses. For instance, this might be uti-
lized to illustrate more powerful attackers. Lastly, the toolkit excludes
certain IP addresses from the selection process (e.g., an IP that starts
with 192 must not be used as the source IP of a DDoS attack).

discussion

The performance and qualitative evaluation for the prototype of ID2T

corroborated the hypothesis that ID2T is scalable and fulfills the re-
quirements proposed in Section 7.2. The toolkit is able to handle large
network files in a reasonable time. In addition, the examination of var-
ious parameters suggests that the generated datasets contain realistic
properties. There are a few challenges that remain, however, in order
to eliminate as many artifacts as possible from synthetically injected
attacks.

First, there is a need for novel metrics to measure the quality of
synthetically generated datasets. For instance, such a metric could
be formally defined as a function that includes a weighted composi-
tion of all possible parameters that may introduce undesired artifacts.
Second, a more in-depth investigation into the quality requirements,
beyond the ones already identified in the related work, is needed in
order to establish how the resulting datasets are affected.

Many functionalities of the ID2T prototype currently include steps
that the user has to manually perform (for instance, using the results
of the statistics analysis). A better interconnection and automation
is planned for the process of selecting parameters from the statistics
collected during the static analysis of the user packet capture files.
Additionally, it is intended to further develop the attack controller
module; focusing on producing a more flexible method of creating
custom and novel attacks.

Finally, the merger module, along with the statistics and the attack
controller, are envisioned to have an additional role. Cyber-attacks
may introduce various changes on a network and currently this be-
havior is not fully reflected in ID2T. For instance, during a DDoS attack
the number of dropped packets might increase significantly. There is
a trade-off between introducing such changes in the network without
inserting artifacts. This is considered as the next step for ID2T and will
be examined in the future work.

112 id2t : an intrusion detection dataset creation toolkit

summary

This chapter presented a novel approach towards the generation of
synthetic, yet realistic, intrusion detection datasets. The chapter serves
as a first step in the direction of modeling the prerequisites for the
construction of high quality datasets. By studying the related work
in the area, a comprehensive list of functional and non-functional re-
quirements is proposed. In addition, specific properties that influence
the quality of a dataset are discussed. Furthermore, the proposed sys-
tem, namely ID2T, contributes in the area of intrusion detection evalu-
ation. It offers a methodological approach for injecting network files
with cyber-attacks to generate labeled datasets. Lastly, the developed
prototype has been extensively evaluated with a focus on parameters
and properties that might introduce artifacts.

The current chapter, along with Chapters 5 and 6, concludes the
contributions of this dissertation in the area of alert data generation.
The upcoming third part of the thesis will be presenting contributions
in the core areas of collaborative intrusion detection.

Part III

C O L L A B O R AT I V E I N T R U S I O N D E T E C T I O N
S Y S T E M S

The second part of the dissertation proposed contribu-
tions that aimed on the detection of attacks and the gen-
eration of alert data. The upcoming third part of this the-
sis presents contributions in the core area of CIDSs. First,
Chapter 8 introduces the concept of communities of sensors
accompanied by the utilization of ensemble learning tech-
niques for CIDSs. On the basis of this, Chapter 9 proposes
a novel distributed CIDS that exhibits a sophisticated corre-
lation mechanism while also supporting the need for lo-
cality. Lastly, Chapter 10 contributes in the area of attacks
in CIDSs by proposing improved techniques for detecting
CIDS sensors as well as respective mitigation mechanisms.

8
C O M M U N I T Y- B A S E D C O L L A B O R AT I V E
I N T R U S I O N D E T E C T I O N

The previous contributions of the thesis focused on generating alert
data and on novel mechanisms for the detection of attacks. This chap-
ter introduces and discusses the concept of communities in the con-
text of collaborative intrusion detection. The main contribution, of the
chapter at hand, is a CIDS concept that applies the idea of communi-
ties of sensors that collaborate by exchanging features of network traf-
fic to create a holistic picture of the monitored network. The remain-
der of this chapter is organized as follows: Section 8.2 presents the
proposed community-based CIDS concept; the problem is formalized,
and the respective parameters and proposed algorithms are described
in detail. Section 8.3 evaluates the community concept by applying it
in an anomaly detection scenario. Section 8.4 concludes the chapter,
and gives insights into further directions of the proposed approach.
In addition, the latter part provides the reader with a logical intercon-
nection towards Chapter 9. Finally, Figure 32 depicts the overview of
the chapter with regard to the overall thesis structure.

Community-
based

collaboration
concept

Two
algorithms

for
community
formation

First
detection-
level CIDS
approach

Figure 32: Overview of the Chapter and key contributions.

115

116 community-based collaborative intrusion detection

introduction

The previous chapters provided contributions mainly in the ar-
eas of alert generation and attack detection. As discussed (see
Chapter 2.1), the detection of intrusions with IDSs is typically

performed through misuse analysis or anomaly detection. Misuse analy-
sis assumes the availability of fingerprints of previously seen attacks,
so that they can be detected upon their next occurrence. Anomaly de-
tection establishes a model of normal system behavior. Each deviation
from this model is an anomaly and thus a potential attack.

To create a holistic view of a monitored network, collaboration be-
tween IDSs is required, which has led to the development of CIDSs

(see Chapter 3) that can be centralized or distributed, as discussed
in Chapter 4. Distributed CIDSs provide better scalability than cen-
tralized CIDSs while reducing the communication overhead. However,
compared to such systems, this usually comes at the cost of a de-
creased detection precision, i.e., the ratio between true alarms (or true
positives) and the total number of alarms (true positives + false positives),
as there is no component in the system with global information.

CIDSs exchange data either on the alarm or detection level. Informa-
tion exchange on the alarm level, e.g., [22], encompasses the exchange
of intrusion alarms for post processing. The main goal of this type
of collaboration is to ease the manual task of analyzing all issued
alarms by creating summaries and to discover related attacks. In con-
trast, collaboration on the detection level encompasses the exchange
of monitored information (or data features) to collaboratively create
or improve mathematical models. These mathematical models aim to
improve the detection accuracy and, thus, lower the number of False
Alarms (FAs). However, as discussed in Chapter 4, there is no CIDS

that currently supports data exchange on the detection level [172].
This chapter takes into account the fact that, on the detection level,
ensemble learning can be applied as a distributed machine learning
method [122]. Ensemble learning has been demonstrated to be effec-
tive in the generic setting of improving anomaly detection [197].

This chapter advances the state of the art by proposing a CIDS con-
cept for learning models of normality to detect network anomalies. In
this context, this is the first CIDS proposal to support data exchange
on the detection level. The focus is not to introduce a full-fledged
CIDS, but rather to demonstrate the applicability of ensemble learn-
ing on intrusion detection in a distributed and collaborative setting.
As such, the chapter proposes the establishment of communities of
sensors that exchange data to build anomaly detection models and
detect anomalies collaboratively.

In more details, a sensor is able to participate in multiple com-
munities concurrently, which enables the applicability of ensemble
learning techniques. Each sensor shares data with its communities,

8.2 community-based collaborative intrusion detection 117

so that subsets of the entire dataset are created. This allows each com-
munity to create an alternative hypothesis from each subset. Each
hypothesis represents a particular interpretation of normal behavior
and all hypotheses can be used together to determine whether arbi-
trary network traffic is normal or not. The proposed CIDS concept is
evaluated with a modified version of the DARPA dataset [92] that
reflects a distributed monitoring setting. The results indicate that a
community-based CIDS approach performs better, in terms of detec-
tion accuracy and precision, than isolated IDSs in the task of learning
models of normality.

community-based collaborative intrusion detection

This section provides insights into the proposed community-based
CIDS. The novelty of the approach lies on the ability of the CIDS to
exchange data on the detection level and on the insights of how such
a community-based approach would function.

In the following, a description of the concept is given, accompa-
nied by a formal model and a discussion on how the parameters of
the formal model affect the properties of the CIDS. Subsequently, the
community formation algorithms are described along with an exami-
nation of how the formed communities are used to perform intrusion
detection.

Basic Concept

Sensors are grouped into communities to create samples of the net-
work traffic all sensors are capable of observing. The samples are
used to learn models of normality and perform anomaly detection.
This idea is inspired by ensemble learning and guarantees the reduc-
tion of variance in the process of learning [99]. The overall outcome
is an increased detection performance, in contrast to isolated sensors,
and the reduction of communication overhead, in contrast to central-
ized systems.

In each community, one sensor becomes a community head. Com-
munity heads retrieve monitored data features from all other sensors
in their community and perform intrusion detection. Upon detecting
attacks, community heads forward alarms to a central administration
interface where further correlation may take place. Selecting commu-
nity heads can be done either stochastically or coupled to specific
sensor properties such as their computational capabilities.

This chapter focuses on the detection accuracy and precision a
distributed CIDS can achieve. The practical realization of such a dis-
tributed community formation is out of the scope of the current chap-
ter. However, sensors could be grouped together into a P2P network
using DHTs or P2P-based gossiping techniques [57]. Afterwards, tech-

118 community-based collaborative intrusion detection

niques like flooding can be applied on top of the overlay to establish
communities in a distributed way. In this context, the reader can refer
to Chapter 9 for such an example of a P2P-based CIDS that makes use
of a generalized community-based approach.

Formal Model

The community-based CIDS overlay can be modeled as a graph G =

(V ,E) where the nodes V represent computer systems capable of com-
municating between each other through an overlay communication
links E that exist between them. Let S ⊂ V be the set of intrusion
detection sensors capable of collaborating among each other to detect
attacks. Additionally, let u ∈ V be a central administration interface
responsible for collecting the alarms issued by all IDSs s ∈ S and for
generating intrusion reports. A community is a subset C ⊆ S of sen-
sors, with nc = |C| members. The set of all communities is C, and
the total number of communities is nt = |C|. Each community C has
one sensor s?C ∈ C chosen as the community head; responsible for
performing data analysis and intrusion detection. Every other mem-
ber s ∈ C is connected by an edge e = (s, s?C) ∈ E to s?C. Each sensor
s is responsible for sending all features extracted from the data they
collect to {s?C|∀C ∈ C : s ∈ C}, i.e., all other community heads they are
connected to. The community heads of all communities are summa-
rized in the set S? =

⋃
C∈C s

?
C. Each sensor s ∈ S may be repeated up

to ns times between different communities.
Fig. 33 shows three different examples of parametrization. The pa-

rameters specify how sensors s and community heads s?C are grouped
together. In Scenario 1, two communities are shown (nt = 2). These
communities have four sensors each (nc = 4) and each sensor is al-
lowed to be used only once (ns = 1). Scenario 2 depicts three com-
munities (nt = 3), each having three members (nc = 3), where the
sensors are allowed to be repeated at most twice (ns = 2). Lastly, Sce-
nario 3 shows four communities (nt = 4) with two members each
(nc = 2) where sensors cannot be repeated more than once (ns = 1).

Parameters for Building Communities

When doing collaborative intrusion detection with communities, three
dimensions can be recognized that influence accuracy, scalability and
communication overhead. First, this section discusses the influence of
the size of communities nc and second, the number of communities
nt. These two parameters allow to model a centralized CIDS, a fully
distributed CIDS, or communities. Third, the section examines the im-
pact of the number of times ns a single sensor can be part of different
communities.

8.2 community-based collaborative intrusion detection 119

s

s

s

s
s

s

s

s

s
s

s

s

s

s

s*

Scenario 1:
nt=2, nc=4, ns=1

Scenario 2:
nt=3, nc=3, ns=2

Scenario 3:
nt=4, nc=2, ns=1

s*

s*

s*

s*

s*

s*

s*

s*

Figure 33: Example cases of two communities (left), three communities (cen-
ter), and four communities (right), with sensors s and community
heads s?.

Number of Sensors per Community (nc)

The community size nc significantly influences the detection accu-
racy. When nc = |S|, there is one community with all sensors. The
sensor head s∗C of this single community observes all data in the
network and, thus, has full knowledge. This is equivalent to a cen-
tralized system that can access all data from one single location. In
contrast, when nc = 1, the scenario reflects |S| isolated sensors learn-
ing without any data being shared and no collaboration involved. In
this scenario, each community has one sensor that must also be the
community head. The size of nc is bounded by 1 6 nc 6 |S|.

The communication overhead affected by nc can be expressed as
the edges connecting the sensors s ∈ S to the community heads
s? ∈ S?; being inversely proportional to nc. This overhead is calcu-
lated as |S|− |S|

nc
and represents the number of edges required to inter-

connect all sensors to their respective community heads. Furthermore,
with a small nc, the system as a whole becomes more scalable as
communities become responsible for analyzing less data. By increas-
ing nc, more information becomes available to each community head
and a more accurate model can be derived; however, the communi-
ties become less scalable as more computational power and memory
is required from every community head.

120 community-based collaborative intrusion detection

Number of Communities (nt)

The second parameter that influences the detection accuracy and the
precision is the total number of communities nt. On the one hand,
when nt = 1, only one community is established. This is equivalent
to nc = |S|. On the other hand, when nt = |S| and ns = 1, all sensors
are their own community and no collaboration is involved. This is
analogous to the scenario where nc = 1. This shows that both nt and
nc are inversely related to each other. The number of communities nt
is bounded according to 1 6 nt 6 |S|.

The parameter nt affects scalability only in combination with nc.
Having a high number of communities does not imply anything un-
less nc is taken into account. The main scalability issue in any dis-
tributed environment is the amount of data that needs to be collected
and processed. For instance, a large nt and low nc implies that there
are many communities processing small amounts of data.

Sensor Repetitions in Multiple Communities (ns)

The ns parameter is defined as the upper bound of the total num-
ber of times a sensor can be repeated in different communities. This
parameter leverages the impact one specific sensor can have when
communities are established stochastically. It is bounded according
to 1 6 ns 6 nt. A sensor cannot be repeated within a community;
otherwise, it would introduce bias because of the redundant data be-
ing shared.

As this parameter increases, more data is allowed to be repeated
among many communities. The availability of all data can be aug-
mented by increasing ns. However, as this parameter increases, the
communication overhead increases as well because sensors must trans-
mit the same information to multiple community heads. The parame-
ter ns also directly affects the size of each community. As ns increases,
the number of sensors |C| of each community is increased on average.
More members equates to more communication overhead.

Community Formation

The construction of communities demands criteria for coupling to-
gether the set of sensors S into communities C ∈ C. The coupling
depends on parameters that affect how these are formed, i.e., the
community size nc, the total number of communities nt, and the
maximum sensor repetitions within different communities ns. The
remainder of this section contains a detailed discussion of coupling
criteria and the algorithms that implement these criteria.

8.2 community-based collaborative intrusion detection 121

Coupling Criteria

One important design question of the proposed CIDS concept is how
to assign sensors to communities, or, more precisely, how the data of
all sensors is distributed for analysis. The proposed approach is in-
spired from the bagging ensemble technique. The bagging technique
trains a classifier multiple times using different subsets of a dataset.
Bagging reduces the variance of the detection accuracy [99]: it reduces
the disagreement that might exist when communities are trained on
different subsets of a dataset. To create different subsets of the data,
data records are sampled with replacement from the entire dataset.
To make a decision, every learner classifies the training dataset inde-
pendently and a combination of all decisions is used to classify each
individual training data.

The proposed community-based CIDS behaves like an ensemble of
learners. Each community C ∈ C is a classifier that learns with the
data supplied by its members s ∈ C. Sensors can appear in differ-
ent communities, which is analogous to sampling batches of data ob-
served by different sensors with replacement. The community size nc
specifies how much will be sampled. The number of communities nt
specifies how many classifiers will be built. Bagging does not usually
limit the sampling in any way. Still, the ns parameter is introduced,
to limit the bias one single community may have in the whole system.

Ensemble methods traditionally split samples of the data randomly
(with replacement) among the set of available learners. This is the
motivation behind the stochastic creation of communities. Neverthe-
less, in the context of network data more intelligent decisions can
also be used to split the data. For instance, network traffic can be
split according to common network services, IP addresses or other
network-related criteria. While this chapter focuses on stochastic com-
munity creation, the reader may refer to Chapter 9 for an alternative
and more sophisticated (in terms of selection criteria) approach. At
a glance, this chapter is trying to demonstrate how ensemble meth-
ods are able to perform well in the task of anomaly detection when
coupling criteria are as general as possible.

Community Construction Algorithms

Multiple strategies can be used to form communities by varying the
parameters nt, nc and ns. Each parameter can be fixed to a specific
value for all communities to share or vary for each individual com-
munity. Because of this, two different algorithms are proposed for
constructing communities. Algorithm 1 fixes nc to a particular value
such that all communities exhibit the same size. The other two pa-
rameters, nt and ns, are left to vary for each community. In contrast,
Algorithm 2 fixes the parameters ns and tries to fix nt whenever it is
possible, while leaving nc to vary for each community.

122 community-based collaborative intrusion detection

Algorithmus 1 : comm1(S,nc)

1 C← {∅}, T ← {∅}
2 for s ∈ S do
3 if s /∈ T then
4 C← {s}

5 T ← T ∪ {s}
6 for |C| 6 nc do
7 s← rand(S− C)

8 C← C∪ {s}
9 T ← T ∪ {s}

10 C← C∪ {C}
11 return C

Given all sensors S and nc as input, Algorithm 1 outputs a set of
communities C. This algorithm consists of two parts: In its first part
(lines 2 - 5), the algorithm selects an initial sensor, not belonging to
any other community, to start a new community. The list T is used
to track sensors that already belong to a community. This restriction
ensures that all sensors appear at least once among all communities
while forming as few communities as possible. The second part of the
algorithm (lines 6 - 9) adds random sensors to C from the set S−C

until |C| = nc.
Given all sensors S, nt and ns as inputs, Algorithm 2 outputs a

set of communities C where |C| = nt and no sensor is repeated more
than ns times among all communities. In contrast to Algorithm 1,
this algorithm creates communities of different sizes. Equally to the
nc parameter of Algorithm 1, nt has the property of generalizing how
the community members collaborate as described in Section 8.2.3.2.

Algorithmus 2 : comm2(S,nt,ns)

1 if ns > nt then
2 ns = nt

3 C1,C2, . . . ,Cnt ← {∅}, {∅}, . . . , {∅}
4 C← {C1,C2, . . . ,Cnt}
5 for s ∈ S do
6 x← Uniform(1,ns)
7 T ← {∅}
8 for 1 to x do
9 C← rand(C − T)

10 C← C∪ {s}
11 T ← T ∪ {C}
12 return C

8.3 evaluation 123

Algorithm 2 follows the following strategy. Lines 3 and 4 initialize
the set C with nt empty communities. The first loop of the algorithm
(line 5) iterates over each available sensor s ∈ S to distribute it in
the second loop (line 8). Each sensor s is placed, according to a uni-
form distribution in [1,ns], in multiple communities. It is possible
that some communities are never chosen in line 9 and communities
from the initial set C remain empty. Such empty communities are
discarded.

Community-based Intrusion Detection

Each community C ∈ C represents an overlay where all sensors s ∈ C
are able to freely communicate with the community head, s∗C. All
sensors s ∈ S extract features from the network they monitor and
forward them to their respective community head where all these are
bundled into one aggregated training dataset. Each s∗C ∀C ∈ C learns
a model of normality using its aggregated training dataset, performs
anomaly detection, and sends all resulting alarms to the central ad-
ministration interface u. The unit u receives the alarms of all |S∗|

community heads, sorts the alarms by anomaly score, and reports
the top-most anomalous alarms according to a predefined threshold.

After establishing a model of normality with the aggregated train-
ing dataset, the community heads perform anomaly detection using
an aggregated testing dataset also gathered within the community. Sen-
sors keep sending the same extracted data features used for creating
the aggregated training dataset to the community head. However, the
data features are now bundled into an aggregated testing dataset. The
outcome of performing anomaly detection is the raising of alarms. Ev-
ery community head sends these alarms to a central unit where alarm
correlation and further analysis takes place.

evaluation

This section presents the results of detecting attacks in a modified ver-
sion of the DARPA dataset using the novel idea of communities (cf.
Section 8.2) coupled with the anomaly detection algorithm LERAD
[103]. This evaluation demonstrates how communities outperform
isolated sensors in the task of detecting intrusions using anomaly
detection.

In the performed tests, the intrusion detection capabilities of cen-
tralized, isolated, and community-based CIDSs are compared. A community-
based CIDS is a variant of centralized and isolated ones that repre-
sents a trade-off between scalability and accuracy. Each community
analyzes the network traffic of multiple sensors and provides better
scalability than centralized systems and better accuracy than isolated
systems.

124 community-based collaborative intrusion detection

The DARPA Dataset

The dataset used for evaluation purposes is the DARPA dataset [92].
Regardless of this dataset having certain drawbacks (cf. Chapter 2.3),
the dataset is used to compare the performance of three different sys-
tems under the same conditions; all of them utilizing the same labeled
data. Moreover, the general availability/acceptability of this dataset
and the precisely labeled traffic, without incorrect labels, makes this
dataset more useful, in this particular context, than other alternatives
such as the MAWILab [52], the CDX [139], or an ID2T-generated (see
Chapter 7) dataset.

For the evaluation of the aforementioned approach, the DARPA
dataset was modified to reflect the placement of multiple sensors at
different points in the network rather than only at one. The descrip-
tion of how this is achieved is described in the following.

Modifications to the DARPA Dataset

The DARPA intrusion detection dataset [92] is a collection of network
traffic obtained from a simulated military computer network with la-
beled attacks. In this evaluation, only the data records of incoming
traffic are taken into account. There are a total of three weeks of train-
ing data and two weeks of testing data in the form of packet captures
(pcap files). Only the third week of training data and both weeks of
testing data are used. The training data does not contain attacks and
is used to create models of normality. The testing data contains nor-
mal network traffic and 201 attacks ranging from denial of service to
exploitation attempts. Due to the modifications described in the fol-
lowing paragraphs, 19 attacks are removed, i.e., traces of these attacks
have been dropped as if no sensor was able to pick these up.

In the original dataset all network packets are captured by a sin-
gle sensor at the ingress point of external traffic. For the purpose of
testing the performance of multiple sensors analyzing the data inde-
pendently of each other and within communities, the DARPA dataset
is split according to the visible end-hosts in the local network. The
incoming external traffic is split as if only end-hosts captured the
traffic. The modified DARPA dataset emulates multiple sensors, each
monitoring a single computer system, gathering data independently
of each other. As a consequence, the original testing and training net-
work traffic is split according to the local IPs found in the training set
as if captured by multiple sensors instead of only one.

The DARPA modifications are illustrated in Fig. 34. The red sensor
icons indicate the locations where network data is gathered. In the
original DARPA dataset, one sensor, at the ingress point, collected
all network traffic. The modified DARPA dataset emulates multiple
sensors, each monitoring a single computer system, gathering data
independently of each other.

8.3 evaluation 125

Internet

Internet

Sensor

Sensors

Router

Router

Figure 34: Modifications made to the 1999 DARPA Dataset.

Splitting the original dataset caused two important changes in the
resulting dataset. First, all packets targeting an IP address of a non-
existent endpoint in the local network are discarded as if no sensor
would have seen these. The discarded packets were mostly generated
by services that probed a large range of arbitrary IP addresses. Sec-
ond, all packets targeting a local IP address in the testing dataset,
targeted by incoming traffic that is not present in the training dataset,
were also discarded. Many packets in the original testing dataset tar-
geted local IP addresses not associated with normal traffic. Hence,
for such traffic a model of normality cannot be derived. The end re-
sult was a training dataset containing 15 sensors (i.e., 15 different IP
addresses).

The LERAD Integration

Rule learning algorithms, such as LERAD (see Chapter 2.1), are prime
candidates for building ensembles of learners. An ensemble is a col-
lection of classifiers that come together to classify novel instances as
a group. Ensemble learning is comprised of a set of techniques to
join the decisions made by different classifiers. The two most com-
mon techniques are called Bagging and Boosting [99]. Bagging is the
process of sampling, with replacement, instances from a large dataset
to create subsets. These subsets are used by many classifiers to learn

126 community-based collaborative intrusion detection

different models of normality (for anomaly detection). To classify a
novel instance, each classifier makes a decision.

Multiple techniques can be used to mix all the classification deci-
sions into one final decision. A popular technique is to consider each
classifier output as a vote and use the class with the most votes. In
this chapter, a technique is utilized in which the decision of the classi-
fier with the most confidence in classification is used. The algorithm
(see below) should be able to output not only the class, but also the
confidence of detection as an anomaly score. Therefore, for one partic-
ular novel instance, the classifier with the highest anomaly score is
taken as the classification decision.

To serve the aforementioned properties the LERAD [103] algorithm
is chosen. LERAD is essentially utilized as the detection mechanism
of all community heads s∗ ∈ S∗. Each community head runs LERAD

on its aggregated training data to learn rules that describe the network
traffic of its community. These rules are the model of normality used
for finding anomalies in the aggregated testing dataset. Records in this
dataset are compared with the learned rules and the ones violating
these are assigned an anomaly score. The rule violations, or alarms,
are sent to the central administration interface u. The role of u is to
collect and sort all alarms by anomaly score.

In the process of building the aggregated testing and training datasets,
network traffic goes through pre-processing to extract 23 features
which are effective for LERAD [103]. For each observed TCP stream
the following features are extracted: the date and time; the destina-
tion and source address; the destination and source port; the duration
of the TCP stream; the TCP flags of the first, second to last and last
packets of the TCP stream; the byte length of the stream; and the first
8 words of the stream.

Experimental Setup

The main purpose of the evaluation is to measure the accuracy and
the precision of detection. Accuracy is defined as the total number
of attacks detected over the total number of attacks. The precision
equates to the true alarms (or true positives) over the total number
of alarms (true alarms + false alarms). Due to the stochastic nature
of LERAD, each experiment is repeated 5001 times and the presented
outcome is the average of the accuracy and precision for all runs. The
confidence intervals of these measurements are omitted in the figures,
except for Figure 8.35(a), as they are insignificant.

1 The stochastic nature of the algorithm requires an adequate number of repetitions.
The utilized number was chosen as an upper bound as no difference was observed
to the results beyond this bound, i.e., the values already appear to converge and the
confidence intervals are insignificant.

8.3 evaluation 127

The detection accuracy and precision are measured using the alarms
the central administrator interface u receives from all community
heads. In a pre-processing stage, duplicated alarms within a time-
frame of 60 seconds are removed as, according to the original DARPA
competition, alarms are deemed true if they detect an attack within
60 seconds of its occurrence [92]. Each alarm is being analyzed, from
highest to lowest anomaly score, assessing if the alarm is a true or
false positive. This process continues until a predefined number of
FAs is reached and all remaining alarms are discarded. Note that the
procedure described above closely follows the method for evaluating
LERAD as described in [103].

In every experiment, the accuracy and precision is examined with
different numbers of random communities. Precision is defined as the
ratio between true alarms (or true positives) and the total number of
alarms (true positives + false positives).

Three cases can be distinguished given the size of the community:

• Centralized System (nc = 15): All sensors send the extracted
features to a single community head.

• Isolated System (nc = 1): A community for each sensor (|C| =

15) on its own without any cooperation.

• Communities (nc = x | 1 < x < 15): Variable number of com-
munities.

On the one hand, the community of size 15 is expected to outper-
form all others, in terms of detection accuracy and precision, given
that all the features extracted are available in one single location for
analysis. On the other hand, it is expected that 15 single independent
communities will perform the worst overall as there is no collabora-
tion involved. The following section shows that as communities in-
clude more sensors, the detection accuracy and precision is improved
while at the same time leveraging the communication overhead. In
addition, it is demonstrated that under certain conditions the commu-
nities achieve a detection precision similar to the centralized system
with a better detection accuracy.

Results

The analysis baseline is shown in Figure 35, where the detection accu-
racy and precision is compared for every possible community size nc,
as built by Algorithm 1. Figures 35 (a),(b) show the outcomes of the
experiments by varying the FA limit, i.e., changing the threshold for
raising alarms. Each anomaly detection experiment is carried out un-
til a predefined number of FAs are issued. At this point, the detection
is stopped and the results are recorded. The detection capabilities us-
ing 100, 150, 200 and 400 FAs are being measured. The testing data

128 community-based collaborative intrusion detection

corresponds to two weeks (10 total days) of data; as such, 100 FAs

equates to an average of 10 FAs per day, 150 to 15 FAs per day, and so
on. The shaded area around the solid lines in Figure 35 (a) shows the
confidence intervals of the measurements.

After 100 FAs are found in the sequential analysis of each alarm,
from highest anomaly score to lowest, the accuracy and precision of
the detections are reported. Figure 35 (b) shows that as communities
grow in size, the precision is improved. This translates to the hypoth-
esis that the centralized system would have the highest accuracy and
precision rates. As seen in both Figures 35 (a),(b), if the 100 FA re-
striction is relaxed, some community sizes are able to improve the
detection accuracy in contrast to the centralized system (when nc =
15). At 200 FAs, most community sizes have better detection accuracy
than the centralized system. In addition, relaxing the FA restriction
allows the detection precision to converge to the one of the central-
ized system. Lastly, at 400 FAs, a point is reached where every com-
munity is able to outperform, in terms of accuracy, both the individ-
ual approaches as well as the centralized system. It should be noted
that above the 400 FA limitation, no significant changes are observed.
However, as seen in Figure 35 (b), the precision drops as the FAs are
increased. With the 200 FAs limitation, communities with nc ∈ [9, 11],
quickly approach the precision ratio of the centralized system.

The number of repeating sensors (ns) has also some interesting
properties that impact the detection accuracy of fixed community
sizes. Figure 36 (a) shows the experiments of varying ns ∈ [1, 5] with
Algorithm 2. The graphs being plotted show the impact ns has on
the detection accuracy with respect to the number of communities
nt. As more sensor repetitions are allowed, the overall accuracy is
improved. Here it is also evident that the centralized system (nt =
1) still outperforms all others. Furthermore, Figure 36 (b) strengthens
the aforementioned statement that as nt increases, the impact of ns
decreases.

To sum up, the experimental results indicate a number of interest-
ing facts. First, as expected, a centralized architecture outperforms all
others when the threshold for raising alarms is set high, i.e., when
the number of FAs is constrained to low values. Nevertheless, commu-
nities provide fair detection and precision ratio and better communi-
cation overhead in comparison to a centralized system, while already
outperforming individual IDSs at the lowest tolerated FA limit of 10
average alarms per day (100 FAs). Isolated sensors perform no collab-
oration and, in consequence, create less accurate models of normal
traffic than the ones created by collaborating communities. Second,
as the threshold for raising alarms is lowered (allowing 200 or more
FAs), communities start to perform similarly to the centralized sys-
tem; finally being able to outperform it (in terms of detection accu-
racy). This performance can be explained by the fact that, due to the

8.3 evaluation 129

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

 1 3 5 7 9 11 13 15

D
e
t
e
c
t
i
o
n

A
c
c
u
r
a
c
y

Community Size (nc)

100 FA
150 FA
200 FA
400 FA

(a) Detection accuracy evaluated at different False Alarm (FA) rates.

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

 1 3 5 7 9 11 13 15

D
e
t
e
c
t
i
o
n

P
r
e
c
i
s
i
o
n

Community Size (nc)

100 FA
150 FA
200 FA
400 FA

(b) Precision of detections at different False Alarms (FA).

Figure 35: Detection accuracy and precision at different FAs when commu-
nities are built using Algorithm 1.

stochastic nature of the proposed algorithm, there is a point where
communities are able to gather together enough sensors to generate
accurate enough models of normality that explain general network
traffic patterns. In addition, these results also comply with the initial
argumentation that the proposed community-based CIDS has proper-
ties similar to ensemble learning. The CIDS approach is able to im-
prove performance by using different models of normality learned by
different communities. Overall, the results in Figure 35 indicate that
it is possible to find a combination of parameters nt, nc, ns and a
particular threshold for raising alarms that enables communities to
perform close to a centralized system while reducing the communica-
tion overhead.

130 community-based collaborative intrusion detection

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

 1 3 5 7 9 11 13 15

D
e
t
e
c
t
i
o
n

A
c
c
u
r
a
c
y

Number of Communities (nt)

ns = 1
ns = 2
ns = 3
ns = 4
ns = 5

(a) Detection accuracy depending on the number of communities nt
evaluated using different repetitions ns.

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

1 2 3 4 5 6

D
e
t
e
c
t
i
o
n

A
c
c
u
r
a
c
y

Number of Sensor Repetitions (ns)

nt = 1
nt = 4
nt = 6
nt = 8
nt = 10
nt = 15

(b) Detection accuracy depending on the number of sensor repeti-
tions ns.

Figure 36: Accuracy when the communities are built using Algorithm 2.

For a production system, a practical scenario that can be envisioned
for such a task can be the utilization of ID2T (see Chapter 7) with net-
work traffic from a network, that is to be monitored, as input. In such
a case a similar to the aforementioned evaluation can be performed
to identify the optimal values for the community-related parameters.

For the particular instance of the modified DARPA dataset, the best
results are given when the community size nc = 9, the repetitions
ns = 3, the total communities nt = 4 and the FA threshold is set to
allow 200 FAs.

8.4 summary 131

summary

The continuous sophistication of network attacks urges the develop-
ment of novel IDSs and architectures. This chapter contributes in the
area of collaborative intrusion detection by proposing a CIDS concept
that applies the novel idea of communities of sensors that collaborate
by exchanging features of network traffic to create sufficiently accu-
rate normality models for performing intrusion detection. Moreover,
a further contribution of the chapter at hand is the proposal of the first
CIDS that supports alert data exchange on the detection rather than
the alert level (cf. Chapter 4 and Section 8.1). In addition, two stochas-
tic algorithms were developed that group sensors into communities
and demonstrate how these communities are able to influence the de-
tection capabilities and communication overhead of CIDSs. The experi-
mental results indicate that the proposed community-based CIDS con-
cept, performs better than isolated systems in terms of detection accu-
racy and precision. Furthermore, it has been demonstrated that com-
munities can perform similarly to centralized systems even though
less information is distributed to build normal models for anomaly
detection and, as such, less communication overhead is involved.

Furthermore, the aforementioned contribution of the community-
based CIDS approach is the basis on which chapter 9 is constructed.
That is, the generalized idea of communities is utilized in a fully
fledged distributed CIDS. In that sense the following chapter can be
additionally seen as a practical realization (cf. section 8.2.1) of such
a distributed community formation, comprising with additional so-
phisticated criteria for forming communities.

9
S K I P M O N : A D O M A I N - AWA R E C O L L A B O R AT I V E
I N T R U S I O N D E T E C T I O N S Y S T E M

Chapter 8 introduced the concept of communities for collaborative
intrusion detection. The chapter at hand adopts the generic idea of
communities and builds a fully fledged system on top of it. In partic-
ular, this chapter proposes SkipMon a distributed CIDS and it is orga-
nized as follows. Section 9.2, provides an extensive description of the
architecture of the system. Section 9.3 gives insights with regard to
the implementation. Subsequently, Section 9.4 presents and discusses
the results from the evaluation of SkipMon. Section 9.5 provides an
overview of the section. Finally, Figure 37 depicts the overview of the
chapter with regard to the overall thesis structure as well as the key
contributions of the chapter..

First CIDS with
domain

awareness
support

Support for
various data

dissemination
techniques

Novel
similarity-

based
correlation
mechanism

Figure 37: Overview of the Chapter and key contributions.

133

134 skipmon : a domain-aware collaborative intrusion detection system

introduction

This chapter adopts and advances the idea of communities of
sensors that collaborate by exchanging alert data, which was
presented in Chapter 8. In particular, the chapter adopts the

generic communities concept but offers a more sophisticated method
for correlating alerts and hence for constructing communities. Fur-
thermore, the whole approach is examined as a fully functional CIDS.

For a CIDS to be efficient and usable in a practical manner, a num-
ber of requirements must be fulfilled. In the following, we recapitu-
late these requirements and emphasize on one of them, i.e., the do-
main awareness. The reader can refer to Chapter 3.2 for a detailed
discussion of the requirements and to Chapter 4.2 for a qualitative
comparison of the related work.

First, the CIDS has to provide scalability, i.e., support for the moni-
toring of arbitrary network sizes. This should also be accompanied by
a minimal message overhead as well as by the privacy of the exchanged
alert data. Furthermore, such a system needs to be able to control the
flow of alert network traffic in such a way so that only sub-networks
that are allowed to communicate, can exchange messages. This re-
quirement, namely domain awareness, refers to the ability of the CIDS

to constrain alert dissemination, to certain sub-domains of a network,
with respect to the ongoing security policy of a corporation.

To better understand the necessity of such a requirement, the reader
can consider the case, of a corporate network, in which different sub-
networks are logically separated due to a strict security policy. For
instance, the sub-network of the economics department may not be
allowed to communicate with the development department, and so
forth. This domain awareness property, to the best of the knowledge
of the author (cf. Section 4.2.4) has not been addressed, so far, in the
related work of CIDSs. However, this is significantly important for the
practical realization of such systems.

This chapter presents SkipMon, a novel distributed CIDS approach
that utilizes the SkipNet [67] P2P overlay for the basic communica-
tion of its monitoring sensors. SkipMon offers two major contribu-
tions in the area of CIDSs. First, via the utilization of SkipNet (cf.
Appendix B), it supports domain awareness, i.e., the ability to, on-
demand, constrain the dissemination of alerts to certain sub-domains
of the monitored network. Furthermore, a novel mechanism is pro-
posed for disseminating alert data and subsequently correlating the
received information on the basis of bloom filters. In SkipMon, sen-
sor nodes exchange (alert) network traffic to discover others that ex-
perience similar traffic patterns. For this, a compact (low-overhead),
privacy-preserving data dissemination mechanism is proposed via
the utilization of bloom filters. In particular, sensor nodes that expe-
rience similar traffic subsequently create communities of nodes for

9.2 skipmon system architecture 135

exchanging more fine-grained alert data. In addition, SkipMon scales
to large networks and is open-source, offering one of the first real-
world implementations of a distributed CIDS [48].

The system is evaluated via the usage of real-world network at-
tack traffic to determine the messaging overhead, the accuracy of the
suggested communities, as well as the effectiveness of the respective
domain awareness mechanisms. The conducted experiments indicate
that SkipMon provides good accuracy rates into selecting the correct
sensor nodes that experience similar alert traffic. To evaluate this we
compare SkipMon to a centralized system with full knowledge of the
alert data of all the participating sensors.

skipmon system architecture

This section provides a detailed description of the SkipMon system by
discussing its subcomponents. We utilize the architecture shown in
Figure 38 to construct the five main building blocks that compose our
system. The architectural design of SkipMon is inspired from the CIDS

taxonomy as proposed in Chapter 4.1.
In more details, the Local Monitoring is responsible for the local

detection as performed by the IDSs of each sensor. Sensors communi-
cate by utilizing a P2P membership management protocol, i.e., the Skip-
Net overlay. Subsequently, sensors can exchange alert information by
utilizing the alert dissemination mechanisms. In SkipMon a similarity-
based alert correlation technique is utilized to identify sensors that ex-
perience similar traffic patterns. By making use of such a mechanism
it is possible to detect distributed port scans as well as malware prop-
agation. Each sensor learns the traffic patterns of others and it is able
to utilize a community formation algorithm. Afterwards, sensors can
exchange more fine-grained alert information only with their com-
munity members. This can be of benefit in terms of reducing the alert
traffic of the CIDS. In the following subsections we detail each build-
ing block and how SkipMon fits in each block.

Local Monitoring

A CIDS utilizes several IDSs to monitor an entire network. SkipMon is
envisioned to make use of standard IDSs, e.g., Snort [135] and Bro
[120], as long as they support standardized alert formats, e.g., the
IDMEF [39]. The current prototype of SkipMon (cf. Section 9.3) assumes
the existence of such IDSs. In that sense, SkipMon is monitor agnostic;
the only prerequisite is the input of alert data giving the system the
ability of creating and disseminating local alert knowledge to other
members of the CIDS.

136 skipmon : a domain-aware collaborative intrusion detection system

Local Monitoring

Alert Correlation

Community Formation

Alert Dissemination
Membership

Management (SkipNet)

Figure 38: High level architecture of SkipMon.

SkipNet Overlay

For our system we make use of the SkipNet P2P overlay (cf. Ap-
pendix B). As discussed in the appendix, SkipNet can provide data
locality and domain awareness. In this work, the focus lies on the do-
main awareness to share information only with authorized sensors of
a monitored network. Therefore, for SkipMon, data will be forwarded
between the nodes (monitoring sensors) of the system instead of stor-
ing it at a given node or set of nodes. Due to the routing algorithms
and ordering of nodes in SkipNet, data that shall be exchanged in
one domain can and will only be routed through nodes of this do-
main. This leads to implicit data locality, as data transferred between
two nodes in the same domain will never leave the boundaries of the
domain in transit.

Alert Dissemination

To keep the communication overhead in the system low, alert infor-
mation needs to be disseminated efficiently. Therefore, we examine
three alert dissemination techniques: flooding, partial flooding, and gos-
siping. Flooding is a common dissemination mechanism that has the
advantage of a guaranteed reach of nodes (with a trade off of a high
communication overhead). Partial flooding is inspired by flooding but
takes into account the domain awareness requirement. Lastly, gossip-
ing is a probabilistic approach for disseminating information into the
CIDS.

9.2 skipmon system architecture 137

Flooding

As the name implies, this alert dissemination mechanism operates
with each node sending messages to all their neighbors in the Skip-
Net. Respectively, a node that receives a message will forward it to
all of its neighbors. To minimize the overall communication overhead,
redundant messages (i.e., messages that have been received from an-
other node or path) are dropped. This is achieved by utilizing the
message ID as we discuss in the next sub-section.

Finally, it should be noted that as flooding disseminates data to
all nodes, regardless of their subnetwork, the domain awareness re-
quirement cannot be fulfilled. Nevertheless, flooding can be a useful
mechanism for disseminating important information inside the CIDS.
For instance, such a mechanism can be utilized for informing all the
monitoring sensors of the system for a detected ongoing attack.

Partial Flooding

In order to enable domain awareness, the system utilizes a partial
flooding mechanism. Instead of exchanging messages with all possi-
ble neighbors, nodes selectively exchange messages only with neigh-
bors of the same sub-domain. This is made possible due to the fact
that each message contains a domain awareness value (cf. Section
9.2.4.1) which can be used to query for neighbors in the same domain
level. Such a dissemination technique is particularly useful when se-
curity policies exist that prohibit the communication between differ-
ent domains of a network.

Gossiping

Flooding creates significant network overhead that might exceed the
available bandwidth and computational capabilities of CIDSs’ sensors.
In this context, the gossiping algorithm proposed by Kermarrec et al.
[77, 76] is adapted and utilized in SkipMon.

The original algorithm uses a hierarchical communication approach
where nodes are grouped into clusters. The communication links be-
tween nodes inside the same cluster are called intracluster links. The
communication links that nodes within one cluster maintain to any
other node outside of its cluster are called intercluster links. This work
adapts these concepts to preserve domain awareness within SkipMon.

Gossiping enables messages, with a probabilistic guarantee, to reach
a subset of nodes in a network without flooding. The probability of a
message reaching all nodes within one cluster, that is, of every node
in a cluster having a directed path to every other node within that
same cluster, is given by [77]

pn = exp(−e−β) (1)

138 skipmon : a domain-aware collaborative intrusion detection system

where n is the total number of nodes in the cluster, e is the Euler con-
stant, and β is a constant. By fixing pn to a desired value and solving
for β, it is later possible to determine the number of required intra-
cluster links k that each node in the cluster needs, for disseminating
information efficiently, by utilizing

k = log(n) +β. (2)

SkipMon is also concerned with the preservation of domain aware-
ness. This implies that not all nodes have the ability to contact or
communicate with every other node outside of its domain. This is the
same as restricting the number of intercluster links that exist between
node clusters. If we consider each domain as a cluster, the number of
intercluster links f required to guarantee a probability pm of having
all clusters (or localities) m connected with a path is defined as

f = log(m) + γ. (3)

Once again, the constant γ can be calculated by fixing pm and solving
for c in pm = exp(−e−γ).

Alert Correlation

In the following, we provide insights of the alert correlation in Skip-
Mon. For this, we first discuss the construction of alert messages, and
subsequently present our similarity-based correlation mechanism.

Alert Messages

The alert messages produced by local IDSs may contain a lot and pos-
sibly redundant information for the purposes of a CIDS. In fact, this
issue has been identified and resulted into extensive research into
aggregation and correlation of alert data [138].

To cope with this, two important decisions are taken, in the context
of representing the alert messages. First, we argue that only a small
fraction of the alert messages’ data is required for other sensors to
be able to discover similarities. Bearing this in mind, the system can
utilize a number of important features for representing alerts, e.g.,
the IP addresses of attackers, as well as the source and destination
port numbers of an attack. Note that similar decisions are also taken
in the majority of distributed CIDSs in the related work [172].

To handle and exchange alerts in a compact and privacy-preserving
manner, SkipMon makes use of bloom filters [160]. Bloom filters are a
probabilistic data structure that represents elements in a set and pro-
vides an efficient mechanism to check whether a particular element is
part of the set or not. Bloom filters can handle a very large amount of
data in an efficient manner. In addition, bloom filters are capable of
preserving the privacy of alert data as no information can be leaked

9.2 skipmon system architecture 139

out. In fact, they only possess the ability to check whether a certain el-
ement is part of the set or not. Therefore, organizations can use CIDSs

that support the distribution of messages via bloom filters without re-
vealing sensitive information. Moreover, bloom filters do not produce
false negatives and the false positives ratio can be adjusted with the
following equation [113]:

Pfp = (1− (1−
1

m
)kn)k, (4)

where m is the number of bits in the bloom filter, k the number of
hash functions that are utilized, and n the number of elements in the
bloom filter. The aforementioned properties, and especially Equation
4, are important as they depict the applicability of bloom filters in the
context of a CIDS.

SkipMon makes use of the bloom filters in the following way. Each
sensor produces alerts from which specific features, e.g., the (adver-
saries) IP addresses are extracted, and subsequently added into a
bloom filter. Afterwards, each sensor will utilize the available alert
dissemination techniques (cf. the previous subsection) and send their
bloom filters to other nodes.

Bloom

Filter

Sender
Node
Name

Message

Identifier

Domain
Awareness

Value (L)

Figure 39: Messages in SkipMon.

Overall, messages in SkipMon contain four different fields, as shown
in Figure 39. The first field, bloom filter, contains, as the name implies,
the actual bloom filter. In addition, the sender node name as well as
the message identifier (i.e., a hash value) are added. Both of these fields
are utilized for minimizing redundant messages and, thus, reducing
the overall overhead when disseminating messages. Lastly, the domain
awareness value (L) is an integer that defines the depth of SkipNet sub-
domains that the message can reach. For example, a zero value (L = 0)
indicates that domain awareness is disabled and the message can be
disseminated to any sub-domain. A value of one (L = 1), however,
would indicate that messages can be disseminated to a sub-domain if
and only if the first field of the DNS name of two nodes is the same.
An example, for three different L values, is also given in Figure 40.

Similarity Correlation

Alert correlation takes place when a node receives a message and de-
termines whether the alert data received is relevant for the recipient
node or not. The goal of correlating alerts is to provide a mechanism
for connecting nodes that experience similar traffic patterns. Regard-

140 skipmon : a domain-aware collaborative intrusion detection system

de.cased.n1

de.cased.n2de.darmstadt.n2

de.cased.n1de.cased.n1

com.acme.n3

Domain awareness
activated: L = 2

Domain awareness
activated: L = 1

Domain awareness
deactivated: L = 0

Figure 40: Domain awareness example in SkipMon.

less of the utilized alert dissemination technique, nodes receive mes-
sages from other nodes and compute their similarity value. For this,
SkipMon exploits the inherent properties of the bloom filters and par-
ticularly their ability to perform logical operations such as the bitwise
AND (∧) and the bitwise OR (∨). To be able to do so, all bloom fil-
ters must have the same size and utilize the same hash functions. We
define the similarity Sa,b of two nodes na and na as

Sa,b =
bfa ∧ bfb
bfa ∨ bfb

. (5)

Each node is represented by the set of bits found in their bloom filters.
The similarity correlation of two nodes is calculated by dividing the
bitwise AND over the bitwise OR of their set of bits.

Equation 5, is essentially inspired from the Tanimoto similarity
(similar to the Jaccard similarity). In the context of collaborative in-
trusion detection such an approach is very efficient for detecting sim-
ilarities with respect to the overall alert data of a monitor. Therefore,
it can be utilized for the, out of the box, detection of DDoSs attacks or
for the identification of malware propagation.

After calculating the similarity value, nodes will make use of a
threshold value t to determine whether S is similar enough or not.
As it is discussed in the next section, the threshold creates a leverage
in the number of proposed communities of sensors; when t is low,
for example, a large number of sensors are found to be similar and
therefore grouped together.

The problem of finding an optimal threshold value (golden stan-
dard) heavily depends on the network that is to be monitored. A
large CIDS that consists of monitoring sensors that are exposed to at-
tacks from the Internet is expected to have different properties from
an internal CIDS that is focusing on the monitoring of a large inter-
nal corporate network and so forth. In general, an approach to deal
with the optimal threshold problem can be to estimate the similarity
distribution of random data. That is, inject into a large amount of
bloom filters random data (bits) and calculate the similarity (S). With
regard to the discovered similarity distribution the threshold (t) can
be adjusted accordingly.

9.3 implementation 141

Community Formation

After the successful dissemination and correlation of the alert data,
each sensor creates a matrix with its local knowledge of other sen-
sors. Based on this knowledge and along with the utilized threshold,
sensors can identify others and form a community with them to, af-
terwards, exchange more fine-grained alert data. An example of such
a matrix is shown in Table 11. In the case where the threshold t = 0.8,
node 3 (n3) would only create a community with node 4 (n4). De-
tails on the exchange of alert data after the community formation are,
however, out of the scope of this chapter.

Node S3,1 S3,2 S3,3 S3,4 S3,5

n3 0.5 0.7 1 0.9 0.4

Table 11: Example of similarity scores for node n3.

implementation

The prototype of SkipMon [48] is written in C++, it contains more
than 6500 lines of code, and it is distributed under the GNU Lesser
General Public License (LGPL) v.3. Figure 41 depicts an overview of
the architecture of the implementation. It provides a detailed view
on how different modules of SkipMon are connected. In the follow-
ing, we briefly discuss each of them, i.e., the Control Module the Node
Management, as well as the SkipNet/SkipMon sub-modules.

The Control Module is responsible for managing multiple Node Man-
agement instances, monitor their status, as well as (for the purpose of
the evaluation) injecting alert data to the nodes.

The Node Management is responsible for reporting the status of Skip-
Mon nodes (to the Control Module), for connecting sub-modules of
the system and for providing an interface for exchanging routing in-
formation.

The first sub-modules that are started from the Node Management
are the SkipNet nodes (implemented with respect to the details given
in [67]). SkipNet nodes form an overlay that is used as a backbone for
all the further operations that are done by the SkipMon sub-modules.
The latter, store alert data into bloom filters, share them in the net-
work, and correlate information received from other nodes as dis-
cussed in the previous section.

evaluation

This section provides insights and a discussion of the results gath-
ered from the evaluation of SkipMon. The main research question lies

142 skipmon : a domain-aware collaborative intrusion detection system

Control
Module

SkipMon

SkipNet

SkipMon

SkipNet

Node Management

SkipMon

SkipNet

SkipMon

SkipNet

Node Management

Figure 41: SkipMon implementation overview.

on the measurement of the performance of the proposed system in
terms of its accuracy (in the context of finding sensors that experi-
ence similar traffic patterns) compared to a centralized system with
full knowledge of the alert data of all participating sensors.

First, a description of the utilized dataset is given along with in-
formation regarding the evaluation setup. Afterwards, the results are
discussed by studying the accuracy of the alert correlation technique
and the domain awareness properties of SkipMon.

Dataset Description

For the purposes of the evaluation a dataset provided from DShield
[165] will be used. The DShield project collects alert data that is sent
in by volunteers, e.g., IDSs and firewalls, from all over the world. In
more details, the utilized data, from a 24 hours period, consists of
7, 841, 775 alerts from 232, 379 unique attackers, reported by 138, 192
monitoring sensors.

Malicious IP Source Target Pro-

Log ID Address Port Port tocol Sensor Hash

4616... 116.211.000.232 50978 8080 6 8078...

4502... 094.247.231.216 40370 5900 6 C58A...

4503... 087.118.541.555 3487 445 6 FCBE...

Table 12: DShield dataset example

Table 12 shows an excerpt of the data. The entry for each alert event
is organized as follows:

• Log ID: A unique ID for each alert (truncated in Table 12).

• Source Port: The port that was used for the malicious activity.

9.4 evaluation 143

• Target Port: The port that was targeted during the malicious
activity.

• Protocol: The protocol number of the generated alert.

• Sensor Hash: A unique ID (i.e., a 160 bit hash) that serves as
a pseudonym for each monitoring sensor providing data (trun-
cated in Table 12).

• Time stamp: The exact time stamp (date and time) in which
an alert occurred (excluded from table Table 12 due to space
constrains).

The dataset was pre-processed, that is, the alerts were sorted with
respect to the reporting sensor and stripped of any information other
than the IP address (cf. Section 9.2.4.1). In addition, since IP addresses
can occur multiple times per node, e.g. when (port)scanning multiple
ports of the same sensor, duplicate IPs (targeting the same sensor)
have been removed. Finally, only the data of the top contributing mon-
itoring sensors was taken into account for the evaluation; sensors that
provided less than 10 alerts were excluded from the evaluation.

Evaluation Setup

The purpose of the evaluation is to assess the accuracy of SkipMon’s
mechanism of detecting similar sensors, to compare the different dis-
semination mechanisms, and lastly examine how the domain aware-
ness property influences the accuracy of detection of similar sensors.
For this, we discuss the results of 50 repetition runs, with 100 moni-
toring sensors that each of them contains a maximum of 1000 alerts in
their bloom filters. The respective plots include the min/max values
of the number of proposed communities for each threshold value.

For measuring the accuracy of detecting similar sensors a metric
called number of proposed communities is utilized. This, as the name
implies, refers to the number of (correctly) proposed communities of
sensors and it is examined with respect to various similarity thresh-
olds (by utilizing the Equation 5). Hence, to assess the accuracy of
SkipMon, it is compared to a centralized system that possesses global
knowledge of all the alert data of the participating sensors. For a more
detailed examination of the differences of a centralized system with
SkipMon the false positive and false negative metrics are used, that are
defined as follows. False positives refer to the communities of sensors
that were proposed in our distributed system, but were omitted in
the centralized system. Similarly, false negatives represent the commu-
nities of sensors that have been proposed by the centralized system,
but were not detected by SkipMon. Moreover, for measuring the com-
municational overhead, the total number of exchanged messages is
examined.

144 skipmon : a domain-aware collaborative intrusion detection system

Results

In the following a detailed discussion of the results is given with
regard to the accuracy of the alert correlation and the domain aware-
ness property. The main research question that is to be answered is
how close, in the task of clustering monitoring nodes with similar
traffic patterns, is SkipMon to a centralized system with full knowl-
edge. In addition, the communication overhead trade off (as a result
of utilizing a fully distributed system) is examined. Lastly, this sec-
tion touches the topic of domain awareness and the influence that it
has in the generation of communities.

Accuracy of alert correlation

For disseminating alerts in SkipMon, the flooding and gossiping mech-
anisms, as described in Section 9.2.3, are utilized. More specifically in
the case of gossiping we make use of Equations 2 and 3 by setting the
probability pn = 0.91.

Figure 42 presents the results of flooding and Figure 43 the results
of gossiping respectively. As one can observe the accuracy for both
techniques is close to the centralized system. Moreover, as expected,
the numbers of proposed communities in all cases significantly de-
crease when the threshold is increasing. Lastly, Table 13 depicts an
overview of the communicational overhead, by counting the total
number of messages that are exchanged in each of the three cases.
The centralized system requires a lower number of messages but this
metric does not take into account the computational overhead for the
central component, or the need for scalability. In addition, as expected
flooding generates significantly more messages than gossiping.

CIDS Mean number of messages Min Max

Centralized System 452 452 452

SkipMon (flooding) 1812 445 4793

SkipMon (gossiping) 1346 290 2030

Table 13: Communication overhead comparison

For a more detailed look on the dissemination mechanisms in Skip-
Mon we examine the false positive and false negative metrics. Figure
44 presents the results of false positives and negatives when flooding
and Figure 45 when using gossiping. On the one hand, the amount
of false negatives in the case of flooding can be attributed to informa-
tion loss in the system, e.g., by dropped messages. On the other hand,
the false negatives when gossiping occur due to the fact that not all

1 For further experiments with different k and pn values of Equations 2 and 3 see
Apendix C.

9.4 evaluation 145

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (flooding)

Figure 42: Proposed communities by SkipMon (with flooding) compared to
a centralized system.

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (gossip)

Figure 43: Proposed communities by SkipMon (with gossiping) compared to
a centralized system.

nodes are communicating with each other. Moreover, with the num-
ber of total events decreasing, i.e., higher threshold, the number of
false negatives also decreases. Finally, it is interesting to note that the
total number of false positives is, in all cases, significantly low, due
to the bloom filter utilization in the computation of the similarity.

Strict domain awareness

To evaluate the domain awareness properties of SkipMon four differ-
ent domains with different DNS suffixes were created, resulting in
different name ID prefixes. As the utilized dataset itself does not pro-

146 skipmon : a domain-aware collaborative intrusion detection system

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f

fa
ls

e
 p

o
si

ti
v
e
s

/
fa

ls
e
 n

e
g

a
ti

v
e
s

Similarity threshold

false negatives flooding
false positives flooding

Figure 44: False positives and false negatives (flooding).

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

fa
ls

e
 p

o
si

ti
v
e
s

/
fa

ls
e
 n

e
g

a
ti

v
e
s

Similarity threshold

false negatives gossiping
false positives gossiping

Figure 45: False positives and false negatives (gossiping).

vide any information regarding domains, the DShield IDSs’ alerts are
assigned to the monitoring sensors randomly. With respect to the do-
main awareness metric this reflects to L = 1 for all four domains, and
the dissemination mechanism in this case is partial flooding (cf. Sec-
tion 9.2.3). The results of the experiments are depicted in Figure 46.
As expected, this configuration results to a much higher error rate
compared to the centralized system, which does not follow any do-
main awareness constraints. Nevertheless, in a real world scenario,
it is expected to have higher similarity in the alerts between nodes
of the same domain and thus a higher number of proposed intra-
domain communities between those nodes. Therefore, we argue that
these results can be seen as the worst case scenario due to the en-
forced randomness in the alert creation level.

9.4 evaluation 147

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (flooding (locality))

Figure 46: Strict domain awareness in SkipMon.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (flooding (partial locality))

Figure 47: Partial domain awareness in SkipMon.

Partial domain awareness

In order to observe a case of a possible real world scenario the case
of partial domain awareness is examined. That is, we examine how
the system behaves when three of the domains keep the restrictions
of internal dissemination (i.e., L = 1) and one of them is able to share
its alerts with all nodes (i.e., L = 0). This scenario is depicted in
Figure 47. As seen in the plot, the information shared publicly by a
quarter of the nodes, enables SkipMon to find about twice as much
communities among the nodes. Again, due to the smaller amount of
messages flooded, the results of the nodes are denser over the runs.

148 skipmon : a domain-aware collaborative intrusion detection system

summary

This chapter presented a novel distributed CIDS approach called Skip-
Mon. The proposed system extends the state of the art in collaborative
intrusion detection in two main aspects:

• The proposed similarity-based correlation mechanism can effec-
tively correlate large amounts of alert data while preserving
their privacy.

• Domain awareness, the ability to dynamically constrain alert dis-
semination with respect to security policies, is proposed, real-
ized and implemented via the adaption of the SkipNet P2P over-
lay.

In addition, the proposed approach complements the CIDS area by
providing the first publicly available distributed CIDS. Moreover, the
adaption of the gossiping approach from Kermarrec et al., as seen in
Section 9.2.3, contributes in the area of data dissemination by offer-
ing a gossiping mechanism for SkipNet that takes into account the
domain awareness property of the overlay. Lastly, the given imple-
mentation is one of the first practical realizations of the SkipNet P2P

overlay.

10
P R O B E - R E S P O N S E AT TA C K S

The previous chapters, in this part of the thesis, offered contributions
in the design and the creation of CIDSs with respect to the building
blocks presented in Chapter 4. This chapter deals with a specific class
of attacks, namely Probe Response Attacks (PRAs), which can be utilized
for the detection of the monitoring sensors of a CIDS. In particular, a
number of significant improvements are proposed for such attacks as
well as for their mitigation. The aforementioned advances are realized
with the development of a framework that enables many PRA-related
actions. The remainder of this chapter is structured as follows. Sec-
tion 10.1 provides an introduction and background knowledge with
regard to PRAs as an extension of Chapter 3.3. Section 10.2 introduces
a framework for the development of PRAs as well as the contributions
of the thesis in the areas of attack mitigation and attack improvement.
Afterwards, Section 10.3 provides insights from the evaluation both in
terms of a simulation and real world attacks. Section 10.4 concludes
this chapter. Finally, Figure 48 depicts the overview of the chapter
with regard to the overall thesis structure.

PREPARE open
framework for

PRAs

Evaluation via
a simulation

and real world
attacks

Novel attack
logic and

improvements
on the

detection of
PRAs

Figure 48: Overview of the Chapter and key contributions.

149

150 probe-response attacks

introduction

Over the last years a number of CIDSs that adopt the role of a
cyber-incident monitor arose, e.g., DShield [165] and TraC-
INg (cf. Chapter 6). A cyber-incident monitor can provide

valuable insights by visualizing and correlating data from a large
number of sensors. These systems are of high significance for a mul-
titude of reasons; first, they are important for the scientific commu-
nity, e.g., for studying attacks, experimenting with real-world attack
data, creating statistics, etc. Second, they can be utilized for the detec-
tion and containment of malware propagation. For instance, DShield
aided in the early detection of the Code-Red worm [115].

For every CIDS it is essential that the network position of its sen-
sors, i.e., its IP address, is not revealed [172]. This is important for a
multitude of reasons. First, an adversary with such knowledge might
attempt to take down sensors, e.g., via conducting a DDoS attack. Fur-
thermore, malware can utilize such knowledge to evade sensors and
thus remain hidden for a longer period of time.

Probe Response Attacks (PRAs) are a specialized class of attacks
against CIDSs that aim on detecting the network position of collab-
orative sensors, i.e., their IP addresses. PRAs take advantage of the
need for publicly accessible alert data generated by CIDSs. In particu-
lar, they make use of the output given by a CIDS as a feedback loop
towards learning information regarding the CIDS sensors.

As a whole CIDSs can be classified, based on their network architec-
ture, into centralized, hierarchical and distributed [172]. In this chap-
ter, the focus lies on CIDSs that publish their results publicly over the
Internet. Even though most of existing systems in this category ex-
hibit a centralized architecture, e.g., [165, 171], the applicability of
the attacks discussed in this chapter is architecture agnostic; the sole
requirement is access to the alerts generated by the CIDS.

PRAs were introduced by Lincoln et al. [91] and were further im-
proved by several researchers, e.g., [13, 143]. An example of such an
attack is given in Figure 49. The attack usually involves several steps,
that can be summarized in the following. The adversary begins a
PRA by dividing the whole IPv4 address space into equal groups (for
the sake of simplicity, Figure 49 assumes two groups). Each group
is assigned with special crafted watermarks, so-called markers; in the
current example every three hosts are assigned with the same probe.
Afterwards, the adversary launches the attack by sending a very large
number of probes in the respective address space. The driving idea
behind such a divide and conquer attack is that the markers can be
subsequently utilized for examining the output of the CIDS and de-
termining whether it contains signs of the markers or not. In this
context, and with respect to the received output from the CIDS, the

10.2 prepare 151

attacker can reduce the probed IP space and repeat the probing steps
until the addresses of the sensors are revealed.

Figure 49: Probe Response Attack (PRA) example [175].

This chapter proposes several improvements on both the PRAs and
also their detection and mitigation. In more details, an open-source
framework, called PREPARE, is introduced that can be practically uti-
lized for performing PRAs as well as for studying mitigation tech-
niques. Moreover, a number of novel mechanisms for improving PRAs

and also for defending against them is proposed. The framework and
the aforementioned improvements are evaluated in a simulation envi-
ronment and by deploying real-world attacks on two different CIDSs.
The results (cf. Section 10.3) suggest that the proposed techniques
significantly improve the efficiency of PRAs. In addition, the detection
and mitigation mechanisms can be practically realized.

prepare

This section firstly discusses PREPARE a framework for the develop-
ment and execution of PRAs, along with its structure and properties.
Afterwards, insights are given with regard to the implemented attack
improvements as well as the proposed novel attack mitigation tech-
niques.

System Overview

Figure 50, depicts an overview of the framework’s architecture. PREPARE

is written in Python and C and can be split into three main blocks,

152 probe-response attacks

the User Interface (UI), the PRA logic, and the Wrapper (that includes the
scanning mechanisms).

The UI of PREPARE is a typical console-based interface that provides
the user with all the basic commands for customizing the parameters
of a PRA. The PRA logic implements the proposed attack methodol-
ogy based on a certain logic flow that is described in the following
section. The Wrapper contains a modified version of the core of the
ZMap scanner [42]. In more details, ZMap was extended by the ad-
dition of several new modules that are responsible for packet gener-
ation, response interpretation, and for handling the output. As one
can observe from Figure 50, the PRA logic makes use of ZMap by
first providing, as input, the optimal configuration (e.g., the specific
marker strategy, the scan rate, etc.) and afterwards receiving and an-
alyzing the scan results. After the successful completion of an attack
the framework generates a CSV file, that contains all the information
regarding the identified sensors.

Figure 50: PREPARE attack framework’s high-level overview.

Improving PRAs

The basic principle of PRAs is to correlate attack events, from the out-
put of a CIDS, to probes by utilizing markers. To better understand
how markers can be constructed, an example is given in the follow-
ing that describes the utilization of destination ports as markers (via
basic marker-encoding).

The idea of address encoding, enables the attacker to map target ad-
dresses of sensors into a port range. For instance, by encoding the first
two bytes of a destination IP address range of 0.0.0.0 to 255.255.0.0
into a port range of 0 to 65535 (0 = 0.0.0.0, 1 = 0.1.0.0, etc.), an
attacker is able to, later on, decode this address. Subsequently, this
allows to reduce the address range to be scanned. Based on the last
example, if only the port value 1 is received from the attack report of
the CIDS, further scans can be limited to the subnet 0.1.0.0/16. Assum-

10.2 prepare 153

Figure 51: Distribution of possible markers in DShield.

ing that the source and/or target ports are shown in the report, the
attacker is able to read and decode the port information and apply
this encoding methodology without additional effort.

However, the aforementioned encoding logic (introduced by Bethen-
court et al. [13]) does not take noise into account. Noise refers to or-
dinary attacks, which appear in the CIDS’s output, that can be falsely
interpreted (by the adversary) as part of a PRA. Hence, from the attack-
ers’ perspective, noise is important as it can introduce false positives
and it can be seen as a two-dimensional problem. First, there is the
case that a CIDS produces alerts in which the ports have high density.
This degrades the effectiveness of a PRA as the number of noise-free
ports (utilized as markers) is low, and thus can generate many false
positives. Moreover, when the alerts include only a few ports, but the
amount of the alerts is very high, this can also affect the bandwidth
requirements of a PRA and the amount of re-probing required. Di-
verging from previous work a novel marker-encoding methodology
is proposed that also takes into account noise.

First, the utilized marker type is not limited to a specific field but
can be rather dynamic with respect to the specifics of the targeted
CIDS. For instance, Figure 51 depicts the frequency distribution of pos-
sible probe markers, i.e., destination ports, source ports, and IP source
addresses, in the context of the Dshield CIDS [165]. More specifically,
the figure plots the frequency of the alert data gathered in a 12 hours
period. From the set of all available ports, only a few are ever utilized,
and also the IP addresses provide enough space for a marker. In more
details, approximately 46, 943 destination, and 4, 270 source ports do
not appear in the analysis, which provides enough flexibility to uti-
lize them as markers. This also applies to the (source) IP addresses
(in a magnitude of 109 available addresses) especially when taking

154 probe-response attacks

into account that an attacker can spoof IP addresses that have not
been seen before. Thus, introducing a combination of probe types,
effectively multiplies the amount of the available markers.

The approach proposed in this section, called Generic Marker En-
coding Methodology (GMEM), combines all available marker values
of a CIDS (e.g., source/destination ports, source IP addresses, etc.)
and introduces a checksum along with the encoded marker. The lat-
ter offers a highly effective remedy for noise, as all markers need to
pass an encoding phase before considered part of a PRA. The total
amount of available marker bits Mbits can be calculated by multi-
plying the sizes of all markers m as Mtotal =

∏
mi and deriving

Mbits = log2(Mtotal). For instance, the marker types when utilizing
the source and destination ports1, results in Mtotal = 65535 ∗ 65535 =
4.294.836.225 which gives Mbits = 32.

Figure 52, depicts the overall activity flow for a PRA that utilizes
GMEM, which is split in four logical steps, namely: Pre-selection, En-
coding, Probing and Decoding.

Figure 52: GMEM flow overview example.

pre-selection In the first step all available marker types are con-
catenated in a specific order. This generates a specific marker pattern
that is afterwards used for inserting the marker value and the check-
sum. As an example the following marker types can be used:

• A: Destination port (16 bits)

• B: Source IP address (32 bits)

• C: Source port (16 bits)

The resulting marker pattern P can be presented as [AAAA][BBBBBBBB][CCCC],
where every upper case letter represents four bits. Note, that intermix-
ing individual bits is also allowed as long as the pattern maintains its
structure throughout all the steps of GMEM.

1 65635 is the total number of available TCP and UDP ports.

10.2 prepare 155

encoding In this phase, the actual marker value, e.g., the (can-
didate) IP address of the target sensor, is placed in the marker pat-
tern. The IP address in this case can be represented as DDDDDDDD,
and can be placed in the beginning of the pattern, transforming P
to [DDDD][DDDDBBBB][CCCC]. After encoding the marker value, a
marker checksum is calculated over the previously defined marker
value. This checksum in turn gets placed at the end of the marker
after setting all unused bits to 0. With respect to the encoding exam-
ple, the marker pattern P would become [DDDD][DDDD0000][0000]
before generating the checksum C = checksum(P) = SSSSSSSS and
appending it to the end of the marker value, which becomes marker
m = P‖C = [DDDD][DDDDSSSS][SSSS]. Note that this simple con-
catenation can be exchanged with more sophisticated combinations
of marker values and checksums as long as the same procedure is
reversely applied in the decoding part.

probing When the first two steps are completed the probing phase
can begin. Here, the generated marker m is placed into the destina-
tion field of the network packets to be sent.

decoding Lastly, by reading the feedback of the targeted CIDS the
decoding phase takes place. In this step, individual markers get ex-
tracted and ordered. The system calculates the checksum2 over the
marker value and compares it to the extracted checksum. In the case
of a match the response is marked as accepted and can be further
utilized to create subgroups and finally identify sensor nodes. Re-
sponses that fail the check are assumed as noise and hence are ig-
nored.

GMEM introduces a trade-off between noise avoidance (filtering out
more noise by utilizing more checksum bits but use less bits to build
markers) and the amount of marker values (more bits for markers
but less bits for checksums). As an example, two marker types A
and B both providing four bits, could be used to create a total of
256 markers. Using all eight bits for marker encoding without any
checksum would, however, lead to a high number of false positives.
Alternatively by using six bits for address encoding (four bits from
A and two bits from B) and two bits for a checksum (two bits from
B), the total amount of encode-able markers would be reduced to 64.
As the PRA defender cannot know which bits were taken for address
encoding or which checksum algorithm was used, noise has to be
introduced for the whole target range of 256 addresses. This reduces
the probability of successful noise integration, that is the probability
that an introduced value matches a correct encoded attacker value.
It should be noted that the filtering effectiveness increases with the

2 Note that PREPARE is currently utilizing the hashing algorithm Fletcher32 for its
efficiency [158], but this can be modified if needed by the user.

156 probe-response attacks

amount of attack rounds because the introduced noise would have to
match the probed value in every new iteration, until it introduces a
false positive in the final probing. In Section 10.3.2.1, a comprehensive
study of the aforementioned trade-off is given to better understand it
and to derive the most effective parameters for a PRA.

Attack Detection and Mitigation

This section discusses two novel mechanisms for defending against
PRAs. The first one is focusing on the detection of such an attack,
and the second one on reducing the effects of a PRA dynamically (i.e.,
upon detection).

PRA detection

The first step to cope with PRAs is to detect their presence in a CIDS.
This chapter proposes a statistical anomaly detection technique that is
based on the following assumptions. First, in a generic CIDS scenario
the adversary has no knowledge of either the IP addresses of the
sensors nor the exact amount of them. In practice, this is realized by
the need for a large-scale probing, e.g., the whole IPv4 address space.
As a consequence of the first assumption, it can also be expected that
a large amount of sensors will be triggered during a PRA. Therefore,
the following statistical properties are expected during PRAs:

• In a certain time-window the amount of unique sensors gener-
ating alerts is significantly increased.

• The number of unique destination (and/or source) ports will
also increase (assuming probes are sent out using port-based
markers).

• The number of unique source IP addresses will also increase (as-
suming the utilization of spoofed addresses by the adversary).

Bearing the above in mind, the chapter proposes a simple, yet effec-
tive, metric to detect such attacks by utilizing the ratio of generated
alerts in relationship to the number of actively reporting sensors. Let
A be the set of all generated alerts, S be the set of all sensors, St ⊂ S
the set of reporting sensors within time-frame t, and At ⊂ A the set
of generated alerts within time-frame t. The ratio ra is defined as:

ra =
|At|

|St|
. (6)

To better understand the applicability of such a metric, an emu-
lated PRA scenario is given in which the respective values are cal-
culated with data gathered from the DShield CIDS. In more details,

10.2 prepare 157

Figure 53: Ratio ra utilization example for DShield data.

Figure 53 depicts the distribution of ra for data gathered by DShield
within a period of 24 hours. An attacker requires approximately 5
hours (with a 100Mbit/s network connection) to perform one prob-
ing step in the entire IPv4 range [42], probing approximately 90, 000
sensor addresses per hour (assuming a total of 500, 000 sensors). With
respect to the aforementioned assumption, in the presence of a PRA

the number of (unique) reporting sensors within a time-frame |St|

will increase significantly, while |At| will only have a relatively small
increase, therefore modifying ra. In the presented period one can ob-
serve the sensors |S| = 131, 344, the alerts |A| = 10, 934, 768, and an
average unique sensor count (per hour)

∑
t
|St|
24 = 55, 000. A PRA was

emulated by introducing alarms in the time-frames between 4 and
17 (which enables three complete probing steps) in a 24 hour period.
By assuming that the maximum probing rate is 90, 000 and that sen-
sors might already be present, the PRAs are injected according to a
uniform distribution between 80, 000 and 90, 000. As it is depicted
in Figure 53, it becomes evident that during an attack the ratio ra
decreases significantly.

Another technique for detecting the presence of PRAs is by studying
the frequency of unique destination ports in a specific time-window.
In contrast to source ports (that are usually chosen randomly), des-
tination ports can be utilized as markers and thus their number is
expected to increase during a PRA. In this case it is important to
carefully decide which time window should be taken for studying
the respective port frequency. Figure 54, shows the distribution of
port frequency in DShield by setting a fixed start time and extend-
ing the window up to 24 hours. As one can observe, in the first half
hour almost 93% of the ports are not utilized, while when the win-
dow is increased this percentage is decreased rapidly. This suggests

158 probe-response attacks

that large time-windows (e.g., more than two hours) might introduce
many false positives.

Figure 54: Destination port frequency for different time-windows in
DShield.

Bearing this in mind, Figure 55 (with a similar setup as Figure
53) shows how the frequency metric evolves under the presence and
absence of an emulated PRA. It can be seen that the difference between
attacked and non-attacked states can be utilized as a threshold for the
detection of PRAs. Section 10.3.2.2 shows how the frequency of the
non-utilized ports can be used for the detection of a PRA.

Figure 55: Destination port frequency in DShield.

Adaptive Reporting

Upon the successful detection of a PRA the CIDS can perform a number
of actions that aim on the reduction of the results of the attack. Hence,
the main goal is to reduce the number of identified sensors as much as
possible. In this context, this section proposes the concept of adaptive

10.3 evaluation 159

sampling, i.e., the CIDS will selectively publish a sample of the overall
generated attacks whenever it detects the presence of a PRA.

Such a mechanism can make use of the aforementioned ratio and/or
the destination port frequency metric to decide when the sampling
should be activated. Furthermore, the intensity of the sampling can
be dependable of the attack intensity, i.e., the more PRAs the less re-
sults are published by the CIDS. Section 10.3.2.2, describes two practi-
cable variations of such an adaptive sampling approach. Furthermore,
the efficiency of the two aforementioned detection techniques will be
studied, combined with the adaptive reporting sampling, in more de-
tail. As it will be shown, such an adaptive approach can efficiently
reduce the effectiveness of a PRA. However, this comes with a trade-
off as the published results of the CIDS will significantly reduced.

evaluation

This section discusses the results of the evaluation for both the attack
and mitigation strategies that have been proposed in the previous
sections. The evaluation is composed by an extensive simulation and
experiments into two real-world cyber incident monitors.

Simulation Setup

In order to evaluate attacks and their proposed mitigation mecha-
nisms, a simulation environment was setup. The simulations match
the characteristics of DShield [165]. DShield is the largest and most
well known cyber incident monitor, reporting thousands of potential
attacks every day since ten years ago. Along with the DShield charac-
teristics, the simulation also takes into consideration previous work
in the area of Internet-wide scanning as the proposed methodology
relies on scanning the entire range of IP addresses exposed on the
Internet.

All the simulations use the following parameters. A set of approx-
imately 288.4 million responsive IPv4 addresses is utilized, as identi-
fied in [98, 68]. Within all these responsive addresses, a total of 500
thousand monitors is set randomly. This is the same number of mon-
itors that DShield is utilizing [165]. In addition, as network traffic
does not always reach its destination, the simulation also takes into
account a 2% packet drop rate. This particular drop rate has been ob-
served in related work [68, 42]. Lastly, a low bandwidth, i.e., 56Mbit/s,
is utilized so as to mimic the bandwidth available to many users (in
offices and households).

160 probe-response attacks

Simulation Results

The simulation evaluation is split into two parts. The first part deals
with the proposed improvements for PRAs while the second one with
the suggested mitigation mechanisms.

Improving PRAs

First, the effectiveness of GMEM is studied along with the efficiency
of such proposal in the presence of noise. In this context, noise was
introduced by adding real-world data from DShield in a rate of 24
events per second (which corresponds to approximately two million
attacks per day).

Figure 56: Attack duration with respect to marker values and checksum bits.

Figures 56 and 57, present the attack duration and the amount of
required probes to perform the PRA for different marker values and
checksum bits combinations respectively. The figures show that an
increase on the bits of the marker’s value effectively decreases both
the attack duration and also the overall numbers of probes required.
This can be explained due to the fact that the group size is becoming
smaller (with increased marker values) which translates in a faster
identification of empty or fully identified groups. Nevertheless, as
it is shown in the following a trade-off exists between not utilizing
checksum bits and the increase of false positives. In particular, this is
the case in which noise is taken into account.

In more details, the false positives that are introduced by noise are
examined, and how the proposed checksum mechanism can assist
in their reduction. Figure 58, depicts the false positives when utiliz-
ing various marker values and checksum combinations. As it was ex-

10.3 evaluation 161

Figure 57: Amount of required probes with respect to marker values and
checksum bit.

pected, the introduction of checksums decreases the amount of false
positives in almost an exponential rate.

Figure 58: False positives for various encoding configurations.

Furthermore, Figure 59 compares our approach with the one pro-
posed by Bethencourt et al [13]. The time required for the full enu-
meration of the sensors is plotted by utilizing the PREPARE framework,
with a 24/8 marker value and checksum bits configuration and com-
pare the results with the ones given in [13]. The results show that a
significantly improved performance is achieved for detecting the com-
plete fraction of CIDS sensors. In addition, PREPARE, with a bandwidth
of 56Mbit/s, performs better even when comparing it to the fastest
case of Bethencourt et al. (384Mbit/s).

Improving Mitigation

In the following, experiments are given with a focus on studying how
well the proposed ratio-based mitigation and detection mechanism

162 probe-response attacks

Figure 59: PRA comparison: time required for the complete enumeration of
sensors.

perform. The driving idea here is to utilize the ratio-based detection
to first detect a PRA and afterwards perform sampling to reduce the
effects of the attack. Hence, a reduction of the detected sensors is
expected, but a also reduction in the total number of events published
from the CIDS as a result of the sampling process.

For this, the simulation framework is configured to perform PRA

detection, and then adaptive sampling when the ratio drops below a
certain threshold. Sampling in this case refers to the probability that
an attack event is shown in the published results. The sampling is also
adaptive in the sense that the lower the ratio is, the less the sampling
is; in other words the sampling reacts to the intensity of the PRA.

DShield data was extensively analyzed to be able to select a ratio
that, in the presence of PRAs, will not generate false positives. The
conducted analysis showed that a threshold ratio that is between (3, 4]
will avoid false negatives and false positives. Hence, a threshold of
Rt = 3 is utilized. With regard to the sampling, the formula

s1 =
Rm − 1

Rt − 1
(7)

is utilized, where Rm is the measured ratio and Rt the threshold ratio.
As the minimum value for the ratio is one (every appearing monitor
submits at minimum one event), the subtraction of one allows to a
reach a theoretical sampling minimum value of zero.

Figure 60 depicts the development of the ratio of attacks to unique
sensors, under the presence of a PRA. The ratio metric is checked
every 60 seconds, i.e., one time-slot. The ratio (as already shown in
Equation 6) is calculated by counting attacks and unique sensors for
the whole time-window (one hour). The initial window state is set by
loading one hour of DShield data without introducing any additional
changes. In total, the attack duration was 671 minutes by sending a
total of 3, 555, 452, 622 probes. The attack starts at time-window two
and ends at time-window 11. As one can observe, there is a constant
drop of the ratio starting with 2.7 and moving towards 1.5 until time-
window 11. By utilizing sampling when the threshold detection is

10.3 evaluation 163

Figure 60: Attacks/Monitors ratio (ra) development under a PRA.

active, the PRA resulted in the identification of only the 30.983% of
the total sensors. However, it should be noted that this technique also
results in a reduction of 62% in the total number of events reported
by the CIDS as a result of the sampling.

Figure 61: Development of non-attacked destination ports under a PRA.

Similarly, Figure 61 shows the development of non-utilized ports
under a PRA. In this case, the sampling is done by utilizing the for-
mula

s2 =
Pt

Pa
(8)

where Pt the threshold ratio and Pa is the amount of attacked ports.
With this mitigation mechanism the PRA detected only the 26.816% of
the sensors, but also resulted in a sampling reduction of 70% in the
number of reported events.

164 probe-response attacks

Real-World Experiments

For a further evaluation of the proposals of this chapter, the PRA

methodology proposed in this chapter was applied against two CIDSs:
TraCINg and DShield.

TraCINg was tested with a bandwidth of 32Mbit/s, a marker value
of 24 and a checksum of four. The overall attack duration was 1114
minutes sending a total of 3, 621, 468, 528 probes. Overall, the 100% of
the sensors have been identified, without introducing any false posi-
tives. The correctness of the results was confirmed both by manually
re-probing the identified sensors and also based on our own ground
truth knowledge of the network location of the monitoring sensors
(as this CIDS is deployed by our university).

Figure 62: Top 10 Ports after the execution of a PRA as generated by DShield.

A PRA was also performed to DShield. For this, a marker value of
32 bits was utilized and no checksum. The checksum was excluded in
this PRA as the attack report can be utilized after the attack to validate
the results. Hence, all available marker bits can be used for probing.
The utilized bandwidth in this case was 14, 4Mbit/s to minimize the
probability of abuse complaints. The duration of the PRA was 2071
minutes and resulted in the identification of 1932 sensors, geograph-
ically distributed all over the world. Similarly to case of TraCINg it
was manually confirmed that the detected sensors did not include
any false positives, by manually re-probing the sensors and examin-
ing the output of the CIDS. However, it is not possible to evaluate
the case of false negatives in DShield, due to the lacking of ground
truth knowledge. Note, that in the past DShield was claiming to uti-
lize around 500, 000 sensors, which does not correspond to the cur-

10.4 summary 165

rent findings. Nevertheless, it can be that a number of sensors are
not publicly reachable (e.g., they might be placed behind firewalls or
monitoring local networks only).

Finally, Figure 62 is taken from the public output DShield after the
PRA. As one can observe the utilized marker, i.e., port 1337, domi-
nates the results and is considered the top attacked port. This also
illustrates the easiness of not only performing a PRA but also tamper-
ing the results generated by a CIDS. For instance, a malicious entity
could utilize such an attack to hide attacks manifested in a certain
protocol/port.

summary

Probe Response Attacks (PRAs) can considerately reduce the benefits
of CIDSs and in particular of cyber-incident monitors that publish their
results publicly.

This chapter contributes in the area of PRAs in three distinctive
ways:

• First, an open-source framework, the Probe REsPonse Attack
fRamEwork (PREPARE), is proposed that enables the develop-
ment, improvement, and execution of PRAs.

• Second, a novel attack logic, the Generic Marker Encoding Method-
ology (GMEM), is developed that significantly improves PRAs

while taking into account the existence of noise in the CIDS’s
output.

• Lastly, a number of novel techniques are proposed that focus on
the detection and mitigation of PRAs.

In addition, this chapter introduces one of the first studies that
practically examine the applicability of PRAs in real-world scenarios.
The evaluation results suggest that PRAs can be launched in a practi-
cal manner and severely reduce the advantages of a CIDS. Lastly, the
interconnection of the chapter at hand with Chapter 6 provides with
a holistic and promising environment for the further study of CIDSs.

Part IV

E P I L O G U E

The last part of the thesis summarizes the aforesaid re-
search contributions of this dissertation. In addition, a dis-
cussion of proposed future work is given for all the respec-
tive contributions.

11
C O N C L U S I O N A N D O U T L O O K

I don’t write a book so that it will be the final word;
I write a book so that other books are possible,

not necessarily written by me.

— Michel Foucault

This thesis contributes in the area of collaborative intrusion detec-
tion, as presented in the last six chapters. In particular, the contribu-
tions have been categorized into two classes. First, chapters 5 to 7

emphasize on the alert data generation by introducing a novel honey-
pot, a cyber incident monitor and a toolkit for the generation of IDS

datasets. Subsequently, chapters 8 to 10 contribute to the core areas
of collaborative intrusion detection by proposing the concept of com-
munities, a novel distributed CIDS and improvements on attacks for
CIDSs. This final chapter concludes the dissertation by providing the
reader with a summary of all contributions. In addition, the chapter
presents an outlook of possible future work for selected areas of the
two core parts of the dissertation, i.e., the alert data generation and
the collaborative intrusion detection.

169

170 conclusion and outlook

conclusion

This dissertation contributes in the areas of collaborative intru-
sion detection and alert data generation for the evaluation of
CIDSs and IDSs. First, Chapter 4 proposes a novel and detailed

taxonomy for CIDSs and offers a comprehensive survey of the state
of the art. Chapters 5, 6 and 7 deal with the topic of generating and
handling real world and synthetic alert data for evaluation purposes.
Afterwards, Chapters 8 and 9 deal with core areas of collaborative in-
trusion detection. In the following, the contributions are highlighted
for each chapter of the two parts of the thesis.

Alert Data Generation

The second part of this thesis, and specifically Chapters 5, 6, 7, present
several key contributions in the area of alert data generation in the
context of collaborative intrusion detection.

• Chapter 5, introduces the idea of mobile honeypots. Particularly,
HosTaGe is proposed, a honeypot that is able to run in mobile
devices and emulate several protocols. The chapter formally de-
scribes the system, on the basis of EFSMs, and focuses on the de-
tection of attacks with an emphasis on ICSs. HosTaGe is also the
first honeypot to tackle the topic of multi-stage attack detection
by performing similarity-based correlation on the identified at-
tacks. Moreover, the system is emphasizing in its ability to com-
plement existing security solutions by generating signatures of
attacks for existing IDSs. The evaluation part of the chapter de-
picts the ability of the honeypot to detect attacks with similar
or better accuracy than the state of the art. In addition, the eval-
uation section opens a discussion towards the topic of honey-
pot evasion. The initial results corroborate the hypothesis that
HosTaGe can remain undetected. Finally, additional evaluation
information with regard to HosTaGe is given in Appendix A.

• TraCINg a cyber incident monitor that also makes use of HosTaGe
sensors is presented in Chapter 6. The system contributes to the
state of the art by offering an open source platform for study-
ing cyber-attacks and their effects. The chapter also offers a long
term study of hopeypot worldwide deployment. This allows to
study attack trends and also apply correlation algorithms for ex-
amining the connections between different attackers that target
multiple monitoring sensors. Lastly, TraCINg can be utilized to
experiment on the area of PRAs, as seen in Chapter 10.

• Chapter 7, serves as a first step towards the generation of syn-
thetic, yet realistic, intrusion detection datasets. For this, the

11.1 conclusion 171

chapter proposes a number of requirements, and on this ba-
sis moves forward to proposing the Intrusion Detection Dataset
Toolkit (ID2T). More specifically, ID2T offers an approach for in-
jecting network files with cyber-attacks to generate labeled datasets.
The results on the developed prototype suggest that the toolkit
is able to handle large network files within a reasonable time pe-
riod. Furthermore, ID2T generates datasets that do not include
any parameters that might act as artifacts and thus degrade the
quality of the generated dataset.

The state of the art was significantly improved with the introduc-
tion of the aforementioned chapters. First, the thesis introduces the
concept of mobile honeypots along with novel detection mechanisms.
This work also complements existing IDSs by providing signatures
for the identification of attacks. Second, the proposed cyber incident
monitor offers a platform for experimenting with various aspects of
intrusion detection while offering an analysis of the lessons learned,
from the deployment of such a system, for a long period of time. Fi-
nally, ID2T improves the alert data generation area by introducing an
approach that moves beyond the logic of static datasets.

Collaborative Intrusion Detection

The third part of the thesis presents contributions in the core areas
of collaborative intrusion detection. At a glance, Chapters 8 and 9

propose the communities concept and a fully distributed CIDS re-
spectively. Chapter 10 contributes in the area of Probe Response At-
tacks (PRAs).

• The idea of communities of collaborative sensors is introduced
in Chapter 8. The proposed CIDS concept makes use of com-
munities of sensors that collaborate by exchanging features to
create holistic and more accurate normality models for intru-
sion detection. The chapter additionally presents two stochastic
algorithms for the creation of such communities. Moreover, the
concept presented in this chapter is essentially the first to make
use of alert data that are exchanged in the detection rather than
the alert level. The results show the applicability of the concept
and that the community-based approach is able to perform bet-
ter than isolated intrusion detection and also provide accuracy
levels that are similar to a centralized CIDS that exhibits global
knowledge.

• On the basis of the aforementioned communities concept, Chap-
ter 9 proposes SkipMon a fully distributed CIDS. SkipMon intro-
duces a novel similarity-based correlation mechanism, on the
basis of bloom filters, that can effectively correlate large amounts

172 conclusion and outlook

of data towards creating communities of sensors. Furthermore,
this is the first CIDS that supports domain awareness to dynami-
cally constrain alert dissemination with respect to security poli-
cies. SkipMon exhibits a number of mechanisms for the prop-
agation of information and it is also one of the first practical
realizations of the SkipNet P2P overlay. The evaluation suggests
that the CIDS can effectively create communities in an accuracy
rate that is close to the one of a centralized system.

• Chapter 10, deals with the topic of PRAs (as introduced in Chap-
ter 3) and proposes an open source framework, called PREPARE,
for their deployment, experimentation and mitigation. On top
of this, the chapter introduces major improvements in the de-
sign of a PRA and in the process of detecting such at attacks
and reducing their impact. At a glance, the evaluation results
first show the applicability of PRAs; the introduced proposals
have been extensively tested in both a realistic simulation envi-
ronment and a real world concept that involved attacking two
different CIDSs. Furthermore, the comparison with the state of
the art shows a significant improvement in terms of the time re-
quired for a successful execution of a PRA. Lastly, the proposed
mitigation techniques appear to be highly effective, yet come
with certain trade-offs.

Overall, the chapters, summarized above, improve the state of the
art in three distinctive ways. First, the concept of communities can
be utilized for CIDSs and the exchange of alert data in the detection
level has been demonstrated. Second, the need for fulfilling the do-
main awareness requirement was addressed while the presented CIDS

additionally exhibits novel correlation mechanisms. Lastly, the study
and improvements proposed with regard to PRAs highlight the com-
petence of such attacks and the need for further research with regard
to them.

outlook

The thesis at hand offers distinctive improvements that advance the
state of the art considerably. Nonetheless, further advancements in
certain aspects of the presented topics can be envisioned. Here, the
reader can find possible directions for improvements for selected top-
ics in both the alert data creation and the collaborative intrusion de-
tection part.

Alert Data Generation

honeypot evasion Honeypots provide a straightforward mech-
anism for detecting attacks, studying the adversaries techniques and

11.2 outlook 173

so forth. The work presented in Chapter 5 highlights, amongst other
things, the importance, from both the perspective of the adversaries
and the defenders, of detecting and evading honeypots. This topic has
not received the necessary attention up to now and the rise of search
engines, such as Shodan, accentuate the importance of stealthy, yet
functional, honeypots. In fact, one could argue that the prototype uti-
lized by Shodan (cf. Chapter 5.3) only makes use of simple techniques
for the detection of honeypots.

Hence, further research can be conducted in both these directions.
In the opinion of the author, the topic of circumventing detection is
significantly challenging from the perspective of the honeypot. There
is a trade off between publishing the source code of such a system
openly, of offering enough interaction to the attacker and to applying
techniques for remaining undetected. A starting point for such a sys-
tem is a proper randomization of certain parameters. For instance, the
analysis conducted in Chapter 5.3 illustrated that hard-coded and/or
unusual parameters can lead to the disclosure of a honeypot.

From the perspective of an adversary, detecting honeypots can be
considered somewhat straightforward. First, a study and analysis of
the state of the art can serve as a basis for such a task. Usually, with
regard to the topic or field that the malicious user is interested in,
e.g., the IoT or a specific protocol, only a few honeypots exist. Further-
more, as transparency for such security projects is important, for the
honeypot to be further utilized, the majority of honeypots are essen-
tially open source projects. This provides the attacker the ability to
extensively study the core parts of a honeypot and identify a possible
misconfiguration and artifacts.

dataset quality In Chapter 7 the thesis examined the topic of
datasets’ quality in the context of evaluating intrusion detection al-
gorithms and systems. Despite the efforts of this thesis and of other
researchers, the area is still lacking a comprehensive survey of all ex-
isting datasets and of the respective toolkits for generating them. For
such a task, an additional challenge that needs to be addressed is re-
lated to the availability of the proposals (e.g., many datasets are not
publicly accessible).

On this basis, the next step can be the proposal of a formal model,
towards providing an estimation of the quality of a given dataset. Sim-
ilarly, such task is not trivial as one has to determine the level of influ-
ence that different parameters can have in a dataset. For instance, ar-
tifacts in the generation of TTL values might be more prominent than
other parameters for the evaluation of a particular anomaly-based de-
tection algorithm. Therefore, a qualitative comparison of the state of
the art cannot be independent of the respective intrusion detection
algorithms.

174 conclusion and outlook

Collaborative Intrusion Detection

collaborative intrusion detection systems (cidss) The
discussion of CIDSs’ related attacks in Chapter 3, highlighted the diffi-
culties of detecting and handling insider attackers either on the host
level or more importantly on the monitoring level. Existing work to-
wards such a task (cf. Chapter 4) usually involves simple reputation
systems and algorithms. Nevertheless, a holistic approach, that takes
into account the state of the art in relevant fields, e.g., computational
trust [137, 71, 7], is still to be investigated.

With regard to the core architectural area of CIDSs, it has become
evident (cf. Chapter 4) that the decision of selecting the most appro-
priate CIDS class (i.e., centralized, hierarchical or distributed) is influ-
enced by a number of parameters and it is not always straightforward
to make such a determination. In this sense, the fully distributed ap-
proach presented in Chapter 9 can be enhanced into a more hybrid
architecture. Such a decision can make it possible for the system to
exchange alert data, or summaries of alert data, between communi-
ties from multiple network domains in an hierarchical manner. An
approach towards such an architecture can be the election of com-
munity heads that are able to exchange data beyond the restrictions
enforced by the domain awareness requirement.

probe response attacks (pras) The dissertation at hand made
significant contributions in the area of PRAs. From the author’s per-
spective future work in this direction may touch the following topics.
First, further research can be conducted towards the applicability of
PRAs. This can vary from performing practical attacks, e.g., via the uti-
lization of the PREPARE framework (cf. Chapter 10), to create malware
that are evasive by design. Note that real world testing of PRAs re-
quires a lot of effort (e.g., one must be careful to avoid the blacklisting
of research networks) and demands high resources (e.g., non-filtered
traffic and also a significantly high volume bandwidth).

Moreover, the detection and mitigation of PRAs is also an area that
contains research gaps and questions. The introduced detection meth-
ods in Chapter 10 are a first step towards an efficient detection of PRAs.
Nevertheless, the following research questions remain.

• How can the PRAs be detected with a small false positive ratio?

• What kind of attacks can be mistakenly classified as PRAs?

• Does the dynamic nature of such datasets influence the selec-
tion of a threshold for the methods described in Chapter 10?

In addition, with regard to the mitigation of such attacks, the pro-
posed adaptive reporting technique introduces a trade off between
the quality of the data (as a result of the significant reduction of the

11.2 outlook 175

alert data due to sampling) and the mitigation itself. Hence, further
research on evaluating the level of acceptable reduction of data in
such a CIDS context is necessary.

Part V

A P P E N D I X

A
A P P E N D I X A - H O S TA G E F U RT H E R E VA L U AT I O N

More details on the evaluation of HosTaGe mobile honeypot are given
in the following. First, Section A.1 shows a number of malware that
have been detected with HosTaGe. Section A.2 deals with the topic of
battery consumption. HosTaGe Mobile

Honeypot

malware detection in hostage

Beyond the experiments shown in Chapter 5, the ability of HosTaGe
to detect malware was further examined in a controlled environment.
In more details, in order to examine the effectiveness of the system
HosTaGe was deployed in an isolated testbed as shown in Figure 63.
For this, several clients were connected to a wireless access point: a
Linux-based system running a Dionaea honeypot, a Windows XP SP3

machine that was infected with a variety of malware (more details
can be found in Table 14), and a mobile device with the following
specifications:

• Device : Galaxy Nexus

• CPU: 1.2 GHz dual-core ARM Cortex-A9 (ARMv7 rev 10 [v7I])

• RAM: 693 MB

• OS: Android 4.2.2 (Jelly Bean)

• Mod-Version: CyanogenMod-10.1.2-maguro

• Linux-Kernel: 3.0.31

HosTaGe successfully detected all the attempts of the malware to
propagate and the results also correspond to the reports from the
Dionaea honeypot. Moreover, several port scans were also executed in
the network using the Nmap network scanner1, to test the resilience
of HosTaGe and its effectiveness towards large number of port scans.
HosTaGe successfully handled all these scans and remained function-
ing without any sign of misbehavior in the presence of large number
of connection requests.

The malware used for the attack handling section were downloaded
from the Open Malware Archive2, operated by the Georgia Tech Infor-
mation Security Center. Table 14 gives insights of the malware family
as well as the MD5 hash of each particular malware that was utilized
and successfully detected.

1 http://www.nmap.org
2 http://oc.gtisc.gatech.edu

179

180 appendix a - hostage further evaluation

Wireless
Access Point

Honeypot
Live CD

Ubuntu 12.04

Infected Windows XP
(VM)

HosTaGe

Figure 63: Attack Testbed Architecture.

Malware Family MD5 Hash

Win32/Themida 682d6c26a81c5f62e9bb02349c804995

Worm/Generic.AHB e56d66fa40e3c2097b8824953a5250cb

Downloader.Generic10.BNH 9523e99c4d4267f813c97e795b33480e

PSW.Generic8.GKS 7fe658710e4904e0ee2148ddee02b8e9

PSW.Generic8.HBB d29a563bdca54d8ca381ea75ff619b2d

PSW.OnlineGames3.AOPH 41b3419b105afe85a38a3ca2765c53fd

Worm/Delf.HA 2e83efa9412ada82f527005d44281792

Worm/Delf.LC 3947c2e31e87ae4a6d5c81b3cee14b15

Win32/Prepender.J 21dc5b946d7a09999f205410ad8f080e

Table 14: Malware Deployed In The Testbed.

battery consumption

While the previous experiments highlight the ability of HosTaGe to
detect attacks, one of the basic requirements of any mobile applica-
tion is to provide a substantive power utilization. The performance of
HosTaGe was profiled using an Android application called PowerTutor[189].
PowerTutor provides measurements of power utilization of an appli-
cation on Android OS. The utilization of HosTaGe was firstly com-

A.2 battery consumption 181

pared with other frequently used applications such as WhatsApp3,
Facebook 4 and the AVG Free AntiVirus5.

To measure the honeypot’s power utilization, HosTaGe was deployed
(running in the background) in a network and an automated script
for testing was executed. The same device as described in the attack
detection analysis (above) was utilized. The script automates random
number of protocol connections, between none to five connections ev-
ery 30 seconds, to the HosTaGe device (emulating attack) for a total
duration of 60 minutes.

0 600 1200 1800 2400 3000 3600
Time(s)

0

200

400

600

800

1000

1200

1400

1600

1800

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

WhatsApp
HosTaGe
AVG Free Antivirus
Facebook Mobile

Figure 64: Power consumption of HosTaGe in comparison to other applica-
tions.

The power consumption of HosTaGe (with script automation) was
compared to the other Android applications which were executed in
the background. The resulting comparison graph is shown in Figure
64. As depicted in the figure, HosTaGe performs reasonably well con-
sidering the amount of attacks handled by it throughout the testing
duration.

Finally, Figure 65 shows a comparison of different deployments of
the honeypot. In more details, the following three different settings
are utilized:

• HosTaGe working in the background with the multistage detec-
tion functionality deactivated

3 http://www.whatsapp.com
4 https://www.facebook.com/mobile/
5 http://www.avg.com/eu-en/antivirus-for-android

182 appendix a - hostage further evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

P
o

w
e

r
C

o
n

s
u

m
ti
o
n

(m
W

)

Time(Seconds)

Full On Screen
Running Background

Running Background, Multistage Off

Figure 65: Power consumption of HosTaGe for various settings.

• HosTaGe working in the background with the multistage detec-
tion functionality activated

• HosTaGe working on the screen and with the multistage detec-
tion functionality activated

As depicted in Figure 65, there is an increase in the battery con-
sumption when the honeypot is also utilizing the screen. Further-
more, the multistage detection functionality introduces a rather small
increase of battery consumption.

B
A P P E N D I X B - S K I P N E T B A C K G R O U N D

SkipNet Background
skipnet

SkipNet [67] is an extension of SkipLists [128] for P2P networking. In
this context two approaches have been proposed, i.e., Skip Graphs
[8] and SkipNet [67]. We utilize the latter one as it provides features
and details that are useful in a practical manner. Some of the notable
properties that SkipNet offers are the routing tables that take into
account the link quality between nodes and the network maintenance
mechanisms that take place after major network disruptions.

In SkipNet all participating nodes are placed in a ring and iden-
tified with their reversed DNS name. In a practical realization this
can be utilized to group nodes (in our case monitoring sensors) of
the same organization or sub-network, as their hostnames end with
the same domain names and their identifiers will start with the same
prefix. Each sensor will not only have a link to their next neighbor
but also to nodes 2n hops away, similarly to the so-called fingers in
Chord [157]. In this case, however, the nodes form sub-rings with the
higher level links, as shown in Figure 66. For each routing level, nodes
choose randomly the sub-ring that they will join. Their ring will lead
to a second identifier, called numeric ID. Similar to SkipLists, each
SkipNet node can hold data, which can be identified with a Uniform
Resource Identifier (URI) providing the location and the name of the
resource.

Figure 66: SkipNet routing infrastructure example [67]

183

184 appendix b - skipnet background

One of the benefits of SkipNet is the possibility to achieve data lo-
cality and domain awareness. When storing data in SkipNet, similarly
to a DHT, data locality can be achieved. When specifying one node in
the URI for a resource, the resource is stored at this node. Afterwards,
the exact location of the resource is known. This is usually impossible
when using load balancing. However, with the Constrained Load Bal-
ancing (CLB) in SkipNet, a domain can be specified, and the resource
will be stored at a member of this domain. Thus, the location of the
resource can be limited to groups of nodes; providing what is defined
in Chapter 9 as domain awareness.

However, for SkipMon (see Chapter 9), data will be forwarded be-
tween the system instead of storing it at a given node or set of nodes.
Thus, in this work, only the domain awareness of SkipNet is important.
Due to the routing algorithms and ordering of nodes in SkipNet, data
that shall be exchanged in one domain can and will only be routed
through nodes of this domain. This leads to implicit data locality, as
data transferred between two nodes in the same domain will never
leave the boundaries of the domain in transit.

C
A P P E N D I X C - S K I P M O N E VA L U AT I O N

SkipMon Further
Evaluationskipmon further evaluation

In the following further results of the evaluation of SkipMon are given.
In more details, the following experiments are an extension of Chap-
ter 9.4.3.

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (gossiping)

(a) Proposed communities by SkipMon (with gossiping, k = 5) com-
pared to a centralized system.

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (gossiping)

(b) Proposed communities by SkipMon (with gossiping, k = 6) com-
pared to a centralized system.

Figure 67: Proposed communities by SkipMon (with gossiping and k be-
tween 5 and 6) compared to a centralized system.

In particular, Figures 67 and 68 correspond to various cases, similar
to Figure 42 (cf. Chapter 9), but by modifying the value k of Equation
2 (see Section 9.2.3). In essence, this translates into a lower probability
for the gossiping. Nevertheless, as it is suggested by the experiments

185

186 appendix c - skipmon evaluation

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (gossiping)

(a) Proposed communities by SkipMon (with gossiping, k = 7) com-
pared to a centralized system.

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f

p
ro

p
o
se

d
 c

o
m

m
u
n
it

ie
s

Similarity threshold

Centralised system
SkipMon (gossiping)

(b) Proposed communities by SkipMon (with gossiping, k = 8) com-
pared to a centralized system.

Figure 68: Proposed communities by SkipMon (with gossiping and k be-
tween 7 and 8) compared to a centralized system.

even though the probability for the gossiping algorithm is decreasing
(with a smaller value k) the accuracy of the system (in comparison to
the centralized approach) is only slightly decreased.

B I B L I O G R A P H Y

[1] Caida: The cooperative association for internet data analysis.
http://www.caida.org, 2015.

[2] Seyed Hossein Ahmadinejad and Saeed Jalili. Alert correlation
using correlation probability estimation and time windows. In
Computer Technology and Development, 2009. ICCTD’09. Interna-
tional Conference on, volume 2, pages 170–175. IEEE, 2009.

[3] Eugene Albin and Neil C. Rowe. A Realistic Experimental Com-
parison of the Suricata and Snort Intrusion-Detection Systems.
In 26th International Conference on Advanced Information Network-
ing and Applications Workshops, pages 122–127. IEEE, mar 2012.
ISBN 978-1-4673-0867-0.

[4] Stephanos Androutsellis-theotokis and Diomidis Spinellis. A
Survey of Peer-to-Peer Content Distribution Technologies.
ACM Computing Surveys (CSUR), 36(4):335–371, 2004.

[5] S Antonatos, E P Markatos, and K G Anagnostakis. Honey @
home : A New Approach to Large-Scale Threat Monitoring. In
ACM workshop on Recurring malcode, pages 38–45. ACM, 2007.
ISBN 9781595938862.

[6] Spiros Antonatos, Michael Locasto, and Stelios Sidiroglou. De-
fending Against Next Generation through Network / Endpoint
Collaboration and Interaction. In 3rd European Conference on
Computer Network Defense, pages 131–141. Springer US, 2009.

[7] Donovan Artz and Yolanda Gil. A survey of trust in com-
puter science and the Semantic Web. Web Semantics: Science,
Services and Agents on the World Wide Web, 5(2):58–71, 2007. ISSN
15708268. doi: 10.1016/j.websem.2007.03.002.

[8] James Aspnes and Gauri Shah. Skip graphs. ACM Transactions
on Algorithms, 3(4):37, nov 2007. ISSN 15496325. doi: 10.1145/
1290672.1290674.

[9] Stefan Axelsson. Intrusion detection systems: A survey and tax-
onomy. Technical report, Department of Computer Engineer-
ing, Chalmers University, 2000.

[10] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian
Dornseif, and Felix Freiling. The nepenthes platform: An ef-
ficient approach to collect malware. Lecture notes in Computer
Science, 4219:165–184, 2006.

187

http://www.caida.org

188 bibliography

[11] Jai Sundar Balasubramaniyan, Jose Omar Garcia-fernandez,
David Isacoff, Eugene Spafford, and Diego Zamboni Ý. An ar-
chitecture for intrusion detection using autonomous agents. In
IEEE computer security applications conference, pages 13–24, 1998.

[12] Bazara I A Barry and H Anthony Chan. Intrusion Detection
Systems. In Handbook of Information and Communication Security,
pages 193–205. Springer Berlin, 2010.

[13] John Bethencourt, J Franklin, and M Vernon. Mapping inter-
net sensors with probe response attacks. In USENIX Security
Symposium, pages 193–208, 2005.

[14] Philippe Biondi. Network packet manipulation with scapy,
2007.

[15] Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry
Mullins. Evaluation of the ability of the Shodan search en-
gine to identify Internet-facing industrial control devices. Inter-
national Journal of Critical Infrastructure Protection, 7(2):114–123,
2014.

[16] Ali Borji. Combining heterogeneous classifiers for network in-
trusion detection. In Advances in Computer Science–ASIAN 2007.
Computer and Network Security, pages 254–260. Springer, 2007.

[17] Daniela Brauckhoff, Arno Wagner, and May Martin. FLAME:
a Flow-Level Anomaly Modeling Engine. In The conference on
Cyber security (CSET), 2008.

[18] Michael Brinkmeier, Mathias Fischer, Sascha Grau, and Guenter
Schaefer. Towards the Design of Unexploitable Construction
Mechanisms for Multiple-Tree Based P2P Streaming Systems.
In Kommunikation in Verteilten Systemen (KiVS), pages 193–204.
Springer Berlin Heidelberg, 2009.

[19] Andrei Broder and Michael Mitzenmacher. Network Applica-
tions of Bloom Filters: A Survey. Internet Mathematics, 1(4):485–
509, jan 2004. ISSN 1542-7951.

[20] Ismail Butun, Salvatore D. Morgera, and Ravi Sankar. A Survey
of Intrusion Detection Systems in Wireless Sensor Networks.
IEEE Communications Surveys & Tutorials, 16(1):266–282, 2014.
ISSN 1553-877X. doi: 10.1109/SURV.2013.050113.00191.

[21] Rainer Bye, Seyit Ahmet Campete, and Sahin Albayrak. Collab-
orative Intrusion Detection Framework : Characteristics , Ad-
versarial Opportunities and Countermeasures. In Workshop on
Collaborative Methods for Security and Privacy (CollSec), pages 1–
12, 2010.

bibliography 189

[22] Yu Chen Cai, Min, Kai Hwang, Yu-Kwong Kwok, Shanshan
Song. Collaborative Internet Worm Containment. IEEE Security
and Privacy Magazine, 3(3):25–33, may 2005. ISSN 1540-7993.

[23] Antony I.T. Castro, Miguel, Druschel, Peter, Kermarrec, A.-M.,
Rowstron. Scribe: a large-scale and decentralized application-
level multicast infrastructure. IEEE Journal on Selected Areas in
Communications, 20(8):1489–1499, oct 2002. ISSN 0733-8716.

[24] Rick Cattell. Scalable sql and nosql data stores. ACM SIGMOD
Record, 39(4):12–27, 2011.

[25] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A Survey. ACM Computing Surveys, 41(3):
1–58, jul 2009. ISSN 03600300.

[26] Tsung-huan Cheng, Y Lin, Yuan-cheng Lai, and Po-ching Lin.
Evasion Techniques: Sneaking through Your Intrusion Detec-
tion/Prevention Systems. IEEE Communications Surveys & Tuto-
rials, (99):1–10, 2011.

[27] S Cheung. Securing collaborative intrusion detection systems.
IEEE Security and Privacy, 9(6):36–42, 2011.

[28] Steven Cheung, Rick Crawford, Mark Dilger, Jeremy Frank,
Jim Hoagland, Karl Levitt, Je Rowe, Stuart Staniford-chen, Ray-
mond Yip, and Dan Zerkle. The Design of GrIDS : A Graph-
Based Intrusion Detection System. Technical report, University
of California at Davis, 1999.

[29] Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Niko-
lay Milanov, Christian Koch, David Hausheer, and Max
Mühlhäuser. ID2T: a DIY dataset creation toolkit for Intrusion
Detection Systems. In Conference on Communications and Network
Security (CNS), pages 739–740. IEEE, 2015. ISBN 9781467378765.

[30] Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Max
Mühlhäuser, and Mathias Fischer. Community-based Collab-
orative Intrusion Detection. In International Workshop on Appli-
cations and Techniques in Cyber Security. Springer, 2015.

[31] Gideon Creech and Jiankun Hu. Generation of a new IDS Test
Dataset : Time to Retire the KDD Collection. In Wireless Commu-
nications and Networking Conference (WCNC), pages 4487–4492.
IEEE, 2013. ISBN 9781467359399.

[32] Mark Crosbie, B Dole, T Ellis, Ivan Krsul, and EH Spafford.
Idiot-users guide. Technical report, 1996.

[33] Frédéric Cuppens. Managing alerts in a multi-intrusion de-
tection environment. In Annual Computer Security Applications,
pages 22–31. IEEE, 2001. ISBN 0-7695-1405-7.

190 bibliography

[34] Frédéric Cuppens and Alexandre Miège. Alert correlation in a
cooperative intrusion detection framework. In IEEE Symposium
on Security and Privacy (S&P). IEEE, 2002.

[35] Zoltán Czirkos and Gábor Hosszú. Enhancing Collaborative
Intrusion Detection Methods Using a Kademlia Overlay Net-
work. In 18th EUNICE/ IFIP WG 6.2, 6.6 International Conference,
volume 7479, pages 52–63. Springer, 2012.

[36] Oliver Dain and Robert K Cunningham. Fusing a Heteroge-
neous Alert Stream into Scenarios. In ACM workshop on data
mining for security applications, pages 1–13, 2001.

[37] Herve Debar and Andreas Wespi. Aggregation and Correlation
of Intrusion-Detection Alerts. In Recent Advances in Intrusion
Detection, pages 85–103. Springer, 2001.

[38] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a tax-
onomy of intrusion-detection systems. Computer Networks, 31

(8):805–822, apr 1999. ISSN 13891286.

[39] Herve Debar, David A. Curry, and Benjamin S. Feinstein. The
Intrusion Detection Message Exchange Format (IDMEF), 2007.

[40] John R Douceur. The sybil attack. In Peer-to-Peer Systems, pages
251–260. Springer Berlin Heidelberg, 2002.

[41] Claudiu Duma, Martin Karresand, Nahid Shahmehri, and Ger-
mano Caronni. A Trust-Aware, P2P-Based Overlay for Intrusion
Detection. In International Conference on Database and Expert Sys-
tems Applications (DEXA’06), pages 692–697. IEEE, 2006. ISBN
0-7695-2641-1.

[42] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap:
Fast Internet-wide Scanning and Its Security Applications. In
Proceedings of the 22nd USENIX Security Symposium, pages 605–
619, 2013. ISBN 9781931971034.

[43] Kevin P Dyer, Scott E Coull, and Thomas Shrimpton. Mari-
onette: A programmable network traffic obfuscation system. In
24th USENIX Security Symposium (USENIX Security 15), pages
367–382, 2015.

[44] Steven T. Eckmann, Giovanni Vigna, and Richard A. Kemmerer.
STATL: An attack language for state-based intrusion detection.
Journal of Computer Security, 10(1-2):71–103, 2002.

[45] Sven Ehlert, Dimitris Geneiatakis, and Thomas Magedanz. Sur-
vey of network security systems to counter sip-based denial-of-
service attacks. Computers & Security, 29(2):225–243, 2010.

bibliography 191

[46] David Ehringer. The dalvik virtual machine architecture. Techn.
report (March 2010), 4, 2010.

[47] Huwaida Tagelsir Elshoush and Izzeldin Mohamed Osman.
Alert correlation in collaborative intelligent intrusion detection
systems: A survey. Applied Soft Computing, 11(7):4349–4365, oct
2011. ISSN 15684946.

[48] Vasilomanolakis Emmanouil and Krügl Matthias. SkipMon
collaborative intrusion detection system. http://scm.tk.

informatik.tu-darmstadt.de/projects/scm-ssi-skipmon.

[49] Juan M. Estevez-Tapiador, Pedro Garcia-Teodoro, and Jesus E.
Diaz-Verdejo. Anomaly detection methods in wired networks:
a survey and taxonomy. Computer Communications, 27(16):1569–
1584, oct 2004. ISSN 01403664.

[50] Marcelo Fantinato and Mario Jino. Applying extended finite
state machines in software testing of interactive systems. In In-
teractive Systems: Design, Specification, and Verification (DSV-IS),
volume 2844, pages 34–45. Springer Berlin Heidelberg, 2003.
ISBN 03029743 (ISSN).

[51] Prahlad Fogla, Monirul I. Sharif, Roberto Perdisci, Oleg M.
Kolesnikov, and Wenke Lee. Polymorphic blending attacks. In
USENIX Security Symposium, pages 241–256, 2006.

[52] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke
Fukuda. MAWILab: Combining Diverse Anomaly Detectors for
Automated Anomaly Labeling and Performance Benchmarking.
In Conference on emerging Networking EXperiments and Technolo-
gies (CoNEXT), pages 1–12. ACM, 2010.

[53] Carol Fung. Collaborative intrusion detection networks and
insider attacks. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications, 2(1):63–74, 2011.

[54] Carol Fung, Olga Baysal, Jie Zhang, Issam Aib, and Raouf
Boutaba. Trust management for host-based collaborative intru-
sion detection. Managing Large-Scale Service Deployment, 5273:
109–122, 2008.

[55] Carol J. Fung, Jie Zhang, Issam Aib, and Raouf Boutaba. Ro-
bust and scalable trust management for collaborative intrusion
detection. In International Symposium on Integrated Network Man-
agement, pages 33–40. IEEE, jun 2009. ISBN 978-1-4244-3486-2.

[56] Antonio Galante, Ary Kokos, Stefano Zanero, and Politecnico
Milano. BlueBat : Towards Practical Bluetooth Honeypots.
In IEEE International Conference on Communications, pages 1–6.
IEEE, 2009. ISBN 9781424434350.

http://scm.tk.informatik.tu-darmstadt.de/projects/scm-ssi-skipmon
http://scm.tk.informatik.tu-darmstadt.de/projects/scm-ssi-skipmon

192 bibliography

[57] Ayalvadi J. Ganesh, A-M. Kermarrec, and Laurent Massoulié.
Peer-to-peer membership management for gossip-based proto-
cols. IEEE Transactions on Computers, 52(2):139–149, feb 2003.
ISSN 0018-9340.

[58] Joaquin Garcia, Fabien Autrel, Joan Borrell, Sergio Castillo,
Frederic Cuppens, and Guillermo Navarro. Decentralized
publish-subscribe system to prevent coordinated attacks via
alert correlation. In Information and Communications Security,
pages 223–235. Springer, 2004.

[59] Pedro Garcia-Teodoro, J. Diaz-Verdejo, Gabriel Maciá-
Fernández, and Enrique Vázquez. Anomaly-based network
intrusion detection: Techniques, systems and challenges.
Computers & Security, 28(1-2):18–28, feb 2009. ISSN 01674048.

[60] Vangelis Gazis, Carlos Garcia Cordero, Emmanouil Vasilo-
manolakis, Panayotis Kikiras, and Alex Wiesmaier. Security
Perspectives for Collaborative Data Acquisition in the Internet
of Things. In International Conference on Safety and Security in
Internet of Things. Springer, 2015.

[61] Vangelis Gazis, Manuel Görtz, Marco Huber, Alessandro
Leonardi, Kostas Mathioudakis, Alexander Wiesmaier, Florian
Zeiger, and Emmanouil Vasilomanolakis. A Survey of Technolo-
gies for the Internet of Things. In International Wireless Commu-
nications & Mobile Computing Conference (IWCMC), Machine - to -
Machine Communications (M2M) & Internet of Things (IoT) Work-
shop. IEEE, 2015.

[62] Manuel Gil Pérez, Félix Gómez Mármol, Gregorio Martínez
Pérez, and Antonio F. Skarmeta Gómez. RepCIDN: A
Reputation-based Collaborative Intrusion Detection Network to
Lessen the Impact of Malicious Alarms. Journal of Network and
Systems Management, 21(1):128–167, mar 2013. ISSN 1064-7570.

[63] Jan; Gobel. Amun : Automatic Capturing of Malicious Software.
Technical report, University of Mannheim, 2010.

[64] Li Gong. JXTA: A network programming environment. Internet
Computing, IEEE, 5(3):88–95, 2001.

[65] John R Goodall, Wayne G Lutters, and Anita Komlodi. I Know
My Network: Collaboration and Expertise in Intrusion Detec-
tion. In ACM conference on Computer supported cooperative work,
pages 342–345. ACM, 2004. ISBN 1581138105.

[66] M. Haklay and P. Weber. OpenStreetMap: User-Generated
Street Maps. Pervasive Computing. IEEE Pervasive Computing,
7(4):12–18, 2008.

bibliography 193

[67] Nicholas JA Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. Skipnet: A scalable overlay net-
work with practical locality properties. In USENIX Symposium
on Internet Technologies and Systems (USITS), volume 4, pages
1–14, Seattle, WA, 2003. USENIX Association.

[68] John Heidemann, Yuri Pradkin, Ramesh Govindan, Christos Pa-
padopoulos, Genevieve Bartlett, and Joseph Bannister. Census
and Survey of the Visible Internet. In Proceedings of the ACM
Internet Measurement Conference, pages 169–182, 2008. ISBN
9781605583341. doi: 10.1145/1452520.1452542.

[69] Mark D Hill. What is scalability? ACM SIGARCH Computer
Architecture News, 18(4):18–21, 1990.

[70] Ramaprabhu Janakiraman, Marcel Waldvogel, and Qi Zhang.
Indra: a peer-to-peer approach to network intrusion detection
and prevention. In IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE),
pages 226–231. IEEE, 2003. ISBN 0-7695-1963-6.

[71] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust
and reputation systems for online service provision. Decision
Support Systems, 43(2):618–644, 2007. ISSN 01679236. doi: 10.
1016/j.dss.2005.05.019.

[72] Peyman Kabiri and Ali A Ghorbani. Research on Intrusion De-
tection and Response : A Survey. International Journal of Network
Security, 1(2):84–102, 2005.

[73] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-
Molina. The Eigentrust algorithm for reputation management
in P2P networks. Proceedings of the twelfth international conference
on World Wide Web - WWW ’03, page 640, 2003.

[74] Pradeep Kannadiga and Mohammad Zulkernine. DIDMA : A
Distributed Intrusion Detection System Using Mobile Agents.
In International Conference on Software Engineering, Artificial Intel-
ligence, Networking and Parallel/Distributed Computing, pages 238

– 245. IEEE, 2005. ISBN 0769522947.

[75] Shankar Karuppayah, Emmanouil Vasilomanolakis, Steffen
Haas, Max Mühlhäuser, and Mathias Fischer. BoobyTrap: On
Autonomously Detecting and Characterizing Crawlers in P2P
Botnets. In International Conference on Communications (ICC).
IEEE, 2016.

[76] Anne-Marie Kermarrec and Maarten van Steen. Gossiping in
distributed systems. ACM SIGOPS Operating Systems Review, 41

(5):2, 2007. ISSN 01635980. doi: 10.1145/1317379.1317381.

194 bibliography

[77] Anne Marie Kermarrec, Laurent Massoulié, and Ayalvadi J.
Ganesh. Probabilistic reliable dissemination in large-scale sys-
tems. IEEE Transactions on Parallel and Distributed Systems, 14(3):
248–258, 2003. ISSN 10459219. doi: 10.1109/TPDS.2003.1189583.

[78] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated,
distributed worm signature detection. In USENIX security sym-
posium, volume 286. San Diego, CA, 2004.

[79] Robert Koch, Mario Golling, and Gabi Dreo Rodosek. Towards
Comparability of Intrusion Detection Systems: New Data Sets.
In TERENA Networking Conference, page 7, 2014.

[80] Christian Kreibich and Jon Crowcroft. Honeycomb: Creating
Intrusion Detection Signatures Using Honeypots. In ACM SIG-
COMM Computer Communication Review, volume 34, pages 51 –
56, 2004.

[81] Christopher Kruegel, Engin Kirda, and Darren Mutz. Automat-
ing mimicry attacks using static binary analysis. In USENIX
Security Symposium, pages 161–176, 2005.

[82] Christopher Krügel, Thomas Toth, and Clemens Kerer. Decen-
tralized event correlation for intrusion detection. In Informa-
tion Security and Cryptology (ICISC), volume 2288, pages 114–131.
Springer Berlin Heidelberg, 2002.

[83] Christopher Krugel, Thomas Toth, and Engin Kirda. Service
Specific Anomaly Detection for Network Intrusion Detection.
In ACM symposium on Applied computing (SAC), pages 201–208.
ACM, 2002. ISBN 1581134452.

[84] Matthias Krügl. Memberhip Management for unstructured dis-
tributed Collaborative IDS. Master thesis, Technische Universität
Darmstadt, 2015.

[85] Butler W. Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, oct 1973. ISSN
00010782.

[86] R Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security
& Privacy, IEEE, (June):49–51, 2011.

[87] Aleksandar Lazarevic, Vipin Kumar, and Jaideep Srivastava. In-
trusion Detection: A Survey. In Managing Cyber Threats, vol-
ume 5, pages 19–78. Springer US, 2005.

[88] Zhichun Li, Yan Chen, and Aaron Beach. Towards scalable and
robust distributed intrusion alert fusion with good load balanc-
ing. In SIGCOMM workshop on Large-scale attack defense (LSAD),
pages 115–122, New York, New York, USA, 2006. ACM Press.
ISBN 1595935711.

bibliography 195

[89] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and
Kuang-Yuan Tung. Intrusion detection system: A comprehen-
sive review. Journal of Network and Computer Applications, 36(1):
16–24, 2013. ISSN 10848045. doi: 10.1016/j.jnca.2012.09.004.

[90] Steffen Liebergeld, Matthias Lange, and Collin Mulliner. No-
madic Honeypots : A Novel Concept for Smartphone Honey-
pots. In Workshop on Mobile Security Technologies (MoST), in con-
junction with the 34th IEEE Symp. on Security and Privacy., 2013.

[91] P Lincoln, P Porras, and V Shmatikov. Privacy-preserving shar-
ing and correction of security alerts. In 13th USENIX Security
Symposium, pages 239–254, 2004.

[92] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan
Korba, and Kumar Das. The 1999 DARPA off-line intrusion
detection evaluation. Computer Networks, 34(4):579–595, 2000.

[93] Michael E. Locasto, Janak J. Parekh, Salvatore Stolfo, and Vishal
Misra. Collaborative distributed intrusion detection. Technical
report, Columbia University, 2004.

[94] Michael E. Locasto, Janak J. Parekh, Angelos D. Keromytis, and
Salvatore J. Stolfo. Towards Collaborative Security and P2P In-
trusion Detection. In IEEE Workshop on Information Assurance
and Security, pages 333 – 339. IEEE, 2005. ISBN 0780392906.

[95] MEA Lopez and OCMB Duarte. Providing elasticity to in-
trusion detection systems in virtualized software defined net-
works. In IEEE ICC, 2015.

[96] EK Lua, J Crowcroft, and M Pias. A survey and comparison of
peer-to-peer overlay network schemes. Communications Surveys
& Tutorials, IEEE, 7(2):72–93, 2005.

[97] Jie Ma, Zhi-tang Li, and Wei-ming Li. Real-time alert stream
clustering and correlation for discovering attack strategies. In
Fuzzy Systems and Knowledge Discovery, 2008. FSKD’08. Fifth In-
ternational Conference on, volume 4, pages 379–384. IEEE, 2008.

[98] Dirk Maan, José Jair Santanna, Anna Sperotto, and Pieter-
tjerk De Boer. Towards validation of the Internet Census 2012.
In 20th EUNICE/IFIP EG 6.2, 6.6 International Workshop, pages
85–96. Springer, 2014.

[99] Richard Maclin and David Opitz. Popular ensemble methods:
An empirical study. Journal Of Artificial Intelligence Research, 11:
169–198, 1999.

[100] Matthew V Mahoney and Philip K Chan. Learning Models of
Network Traffic for Detecting Novel Attacks, 2002.

196 bibliography

[101] Matthew V Mahoney and Philip K Chan. An Analysis of the
1999 DARPA/Lincoln Laboratory Evaluation Data for Network
Anomaly Detection. International Symposium on Recent Advances
in Intrusion Detection, 2820:220–237, 2003. ISSN 0302-9743. doi:
10.1007/b13476.

[102] Matthew V. MV Mahoney and PK Philip K. Chan. PHAD:
Packet Header Anomaly Detection for identifying hostile net-
work traffic. Technical Report 1998, Florida Institute of Technol-
ogy, 2001.

[103] M.V. Mahoney and P.K. Chan. Learning rules for anomaly de-
tection of hostile network traffic. In IEEE International Conference
on Data Mining, pages 601–604. IEEE Comput. Soc, 2003. ISBN
0-7695-1978-4.

[104] Mirco Marchetti, Michele Messori, and Michele Colajanni. Peer-
to-Peer Architecture for Collaborative Intrusion and Malware
Detection on a Large Scale. Lecture Notes in Computer Science,
5735:475–490, 2009.

[105] Sergio Marti and Hector Garcia-Molina. Taxonomy of trust:
Categorizing P2P reputation systems. Computer Networks, 50(4):
472–484, mar 2006. ISSN 13891286.

[106] J McHugh. Testing intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system evalua-
tions as performed by Lincoln Laboratory. ACM transactions on
Information and system Security, 3(4):262–294, 2000.

[107] Guozhu Meng, Yang Liu, Jie Zhang, Alexander Pokluda, and
Raouf Boutaba. Collaborative security: A survey and taxonomy.
ACM Comput. Surv., 48(1):1:1–1:42, July 2015. ISSN 0360-0300.
doi: 10.1145/2785733.

[108] Nikolay Milanov. ID2T: an Intrusion Detection Dataset Toolkit.
Master thesis, Technische Universität Darmstadt, 2015.

[109] Yin Pa Minn, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Mat-
sumoto, and Christian Rossow. IoTPOT : Analysing the Rise of
IoT Compromises. In 9th USENIX Workshop on Offensive Tech-
nologies (WOOT). USENIX Association, 2015.

[110] SA Mirheidari, Sajjad Arshad, and Rasool Jalili. Alert Correla-
tion Algorithms: A Survey and Taxonomy. Cyberspace Safety and
Security, pages 183–197, 2013.

[111] J Mirkovic and Peter Reiher. A taxonomy of DDoS attack and
DDoS defense mechanisms. ACM SIGCOMM Computer Commu-
nications Review, 34(2):39–53, 2004.

bibliography 197

[112] Robert Mitchell and Ing-ray Chen. A Survey of Intrusion De-
tection Techniques for Cyber-Physical Systems. ACM Comput-
ing Surveys (CSUR), 46(4):55:1–29, 2014. ISSN 03600300. doi:
10.1145/2542049.

[113] Michael Mitzenmacher and Eli Upfal. Probability and comput-
ing: Randomized algorithms and probabilistic analysis. Cambridge
University Press, 2005.

[114] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel,
Avi Patel, and Muttukrishnan Rajarajan. A survey of intru-
sion detection techniques in Cloud. Journal of Network and
Computer Applications, 36(1):42–57, 2013. ISSN 10848045. doi:
10.1016/j.jnca.2012.05.003.

[115] David Moore, Colleen Shannon, and Jeffery Brown. Code-
Red: A Case Study on the Spread and Victims of an Internet
Worm. In Second ACM SIGCOMM Workshop on Internet Mea-
surment (IMW), pages 273–284, 2002. ISBN 158113603X. doi:
10.1145/637201.637244.

[116] Collin Mulliner, Steffen Liebergeld, and Matthias Lange. Poster
: HoneyDroid - Creating a Smartphone Honeypot. In IEEE Sym-
posium on Security and Privacy (S&P), 2011.

[117] Mohamed Nassar, Radu State, and Olivier Festor. Voip honey-
pot architecture. In Integrated Network Management, 2007. IM’07.
10th IFIP/IEEE International Symposium on, pages 109–118. IEEE,
2007.

[118] Milanov Nikolay, Vasilomanolakis Emmanouil, and Gar-
cia Cordero Carlos. The id2t: Intrusion detection dataset
toolkit. https://www.tk.informatik.tu-darmstadt.de/de/

research/secure-smart-infrastructures/id2t/, 2015.

[119] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark &
Ethereal network protocol analyzer toolkit. Syngress, 2006.

[120] Vern Paxson. Bro: a system for detecting network intruders
in real-time. Computer Networks, 31(23-24):2435–2463, dec 1999.
ISSN 13891286.

[121] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto,
and Wenke Lee. Mcpad: A multiple classifier system for accu-
rate payload-based anomaly detection. Computer networks, 53

(6):864–881, 2009.

[122] Diego Peteiro-Barral and Bertha Guijarro-Berdiñas. A survey of
methods for distributed machine learning. Progress in Artificial
Intelligence, 2(1):1–11, nov 2012. ISSN 2192-6352.

https://www.tk.informatik.tu-darmstadt.de/de/research/secure-smart-infrastructures/id2t/
https://www.tk.informatik.tu-darmstadt.de/de/research/secure-smart-infrastructures/id2t/

198 bibliography

[123] Eric Peter and Todd Schiller. A Practical Guide to Honeypots.
Technical report, Washington Univerity, 2011.

[124] Phillip A. Porras and Peter G. Neumann. EMERALD: Event
monitoring enabling response to anomalous live disturbances.
In National information systems security conference (NISSC), pages
353–365, 1997.

[125] Phillip A Porras, Martin W Fong, and Alfonso Valdes. A
Mission-Impact-Based Approach to INFOSEC Alarm Correla-
tion. In Conference on Recent Advances in Intrusion Detection
(RAID), pages 95–114. Springer, 2002.

[126] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos:
an emulator for fingerprinting zero-day attacks for advertised
honeypots with automatic signature generation. ACM SIGOPS
Operating Systems Review, 40(4):15–27, 2006.

[127] Niels Provos. Honeyd : A Virtual Honeypot Daemon. In DFN-
CERT workshop, 2003.

[128] William Pugh. Skip lists: a probabilistic alternative to balanced
trees. Communications of the ACM, 33(6):668–676, 1990. ISSN
00010782. doi: 10.1145/78973.78977.

[129] Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. Fast
and Evasive Attacks: Highlighting the challenges ahead. In Re-
cent Advances in Intrusion Detection, volume 4219, pages 206–225.
Springer Berlin Heidelberg, 2006.

[130] Geetha Ramachandran and Delbert Hart. A P2P Intrusion
Detection System based on Mobile Agents. In Southeast re-
gional conference ACM-SE, pages 185–190. ACM, 2004. ISBN
1581138709.

[131] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric
Friedman. Reputation systems. Communications of the ACM,
43(12):45–48, 2000.

[132] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatow-
icz. Handling churn in a DHT. In USENIX Annual Techincal
Conference, number June, pages 127–140, 2004.

[133] Sean Rhea, Brighten Godfrey, and Brad Karp. OpenDHT: a
public DHT service and its uses. ACM SIGCOMM Computer
Communication Review, 35(4):73–84, 2005.

[134] Lukas Rist, Daniel Haslinger, John Smith, Johny Vestergaard,
and Andrea Pasquale. Conpot honeypot, 2013.

bibliography 199

[135] Martin Roesch. Snort-lightweight intrusion detection for net-
works. In USENIX conference on System administration, pages
229–238, 1999.

[136] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. Middleware 2001, pages 329–350, 2001.

[137] Jordi Sabater and Carles Sierra. Review on Computational Trust
and Reputation Models. Artificial Intelligence Review, 24(1):33–
60, 2005. ISSN 0269-2821. doi: 10.1007/s10462-004-0041-5.

[138] Saeed Salah, Gabriel Maciá-Fernández, and Jesús E. Díaz-
Verdejo. A model-based survey of alert correlation techniques.
Computer Networks, 57(5):1289–1317, 2013. ISSN 13891286. doi:
10.1016/j.comnet.2012.10.022.

[139] Benjamin Sangster, Thomas Cook, Robert Fanelli, Erik Dean,
William J Adams, Chris Morrell, and Gregory Conti. Toward
Instrumenting Network Warfare Competitions to Generate La-
beled Datasets. In USENIX Security’s Workshop on Cyber Security
Experimentation and Test (CSET), 2009.

[140] Christian Seifert, Ian Welch, and Peter Komisarczuk. HoneyC -
The Low-Interaction Client Honeypot. In NZCSRCS, 2007.

[141] Poly Sen, Nabendu Chaki, and Rituparna Chaki. HIDS:
Honesty-Rate Based Collaborative Intrusion Detection System
for Mobile Ad-Hoc Networks. In 7th Computer Information
Systems and Industrial Management Applications, pages 121–126.
IEEE, jun 2008. ISBN 978-0-7695-3184-7.

[142] S. Shin and Guofei Gu. Conficker and beyond: a large-scale
empirical study. In 26th Annual Computer Security Applications
Conference, pages 151–160, 2010. ISBN 9781450301336. doi: 10.
1145/1920261.1920285.

[143] Yoichi Shinoda, K Ikai, and M Itoh. Vulnerabilities of passive
internet threat monitors. In USENIX Security Symposium, pages
209–224, 2005.

[144] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali a. Ghor-
bani. Toward developing a systematic approach to generate
benchmark datasets for intrusion detection. Computers & Secu-
rity, 31(3):357–374, 2012.

[145] Vitaly Shmatikov and Ming-Hsiu Wang. Security against probe-
response attacks in collaborative intrusion detection. In Work-
shop on Large scale attack defense - LSAD, pages 129–136, New
York, New York, USA, 2007. ACM. ISBN 9781595937858.

200 bibliography

[146] Steven Snapp, James Brentano, Gihan Dias, Terrance Goan,
Todd Heberlein, Che-Lin Ho, Karl Levitt, Biswanath Mukher-
jee, Stephen Smaha, Tim Grance, Daniel Teal, and Doug Mansur.
DIDS (Distributed intrusion detection system) - Motivation, Ar-
chitecture, and an early Prototype. In Fourteenth National Com-
puter Security Conference, pages 167–176, 1991.

[147] Tomas Sochor and Matej Zuzcak. Study of internet threats and
attack methods using honeypots and honeynets. In Computer
Networks, pages 118–127. Springer, 2014.

[148] Aditya K. Sood and Richard J. Enbody. Targeted Cyber Attacks-
A Superset of Advanced Persistent Threats. IEEE Security &
Privacy, 11(1):54–61, 2013.

[149] Eugene H Spafford and Diego Zamboni. Intrusion Detection
using Autonomous Agents. Computer Networks, 34(4):547–570,
2000.

[150] Lance Spitzner. Honeypots: tracking hackers, volume 1. Addison-
Wesley Reading, 2003.

[151] Lance Spitzner. Honeypots : Catching the Insider Threat. In
Computer Security Applications Conference, pages 170–179. IEEE,
2003.

[152] Shreyas Srinivasa. A Mobile Honeypot for Industrial Control Sys-
tems. Master thesis, Technische Universität Darmstadt, 2015.

[153] A. Srivastava, B. B. Gupta, A. Tyagi, Anupama Sharma, and
Anupama Mishra. A recent survey on DDoS attacks and de-
fense mechanisms. In International Conference on Parallel, Dis-
tributed Computing Technologies and Applications, volume 203

CCIS, pages 570–580. Springer Berlin Heidelberg, 2011. ISBN
9783642240362. doi: 10.1007/978-3-642-24037-9{_}57.

[154] Michael Stahn. Probe response attacks on cyber incident monitors.
Master thesis, Technische Universität Darmstadt, 2015.

[155] Staniford-Chen, Steven Cheung Stuart, Richard Crawford,
Mark Dilger, Jeremy Frank, James Hoagland, Karl Levitt,
Christopher Wee, Raymond Yip, and Dan Zerkle. GrIDS - A
Graph Based Intrusion Detection System for Large Networks.
In National information systems security conference, pages 361–370,
1996.

[156] Peter Stavroulakis and Mark Stamp. Handbook of information
and communication security. Springer Science & Business Media,
2010.

bibliography 201

[157] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek,
and Hari Balakrishnan Ý. Chord : A Scalable Peer-to-peer
Lookup Service for Internet. In Applications, technologies, archi-
tectures, and protocols for computer communications, pages 149–160.
ACM, 2001. ISBN 1581134118.

[158] Jonathan Stone, Michael Greenwald, Craig Partridge, Senior
Member, and James Hughes. Performance of Checksums and
CRCs over Real Data. October, 6(5):529–543, 1998.

[159] Kymie MC Tan, Kevin S. Killourhy, and Roy A. Maxion. Un-
dermining an anomaly-based intrusion detection system using
common exploits. In Recent Advances in Intrusion Detection, vol-
ume 2516, pages 54–73. Springer Berlin Heidelberg, 2002.

[160] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lager-
spetz. Theory and Practice of Bloom Filters for Distributed Sys-
tems. IEEE Communications Surveys & Tutorials, 14(1):131–155,
2012. ISSN 1553-877X. doi: 10.1109/SURV.2011.031611.00024.

[161] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghor-
bani. A detailed analysis of the KDD CUP 99 data set. In
Symposium on Computational Intelligence for Security and Defense
Applications, CISDA, number Cisda, pages 1–6. IEEE, 2009. ISBN
9781424437641. doi: 10.1109/CISDA.2009.5356528.

[162] Urjita Thakar, Sudarshan Varma, and AK Ramani.
Honeyanalyzer–analysis and extraction of intrusion detec-
tion patterns & signatures using honeypot. In Proceedings of
the Second International Conference on Innovations in Information
Technology, 2005.

[163] Stefan Tilkov and Steve Vinoski. Node. js: Using javascript to
build high-performance network programs. IEEE Internet Com-
puting, 14(6):80–83, 2010.

[164] Virus Total. Virustotal-free online virus, malware and url scan-
ner, 2012.

[165] Johannes Ullrich. Dshield internet storm center. https://www.

dshield.org/, 2000.

[166] Alfonso Valdes and Keith Skinner. Probabilistic Alert Corre-
lation. In Recent Advances in Intrusion Detection, pages 54–68.
Springer, 2001.

[167] Emmanouil Vasilomanolakis, Mathias Fischer, Max
Mühlhäuser, Peter Ebinger, Panayotis Kikiras, and Sebas-
tian Schmerl. Collaborative Intrusion Detection in Smart

https://www.dshield.org/
https://www.dshield.org/

202 bibliography

Energy Grids. In International Symposium for ICS & SCADA Cy-
ber Security, number 2010, pages 97–100. Electronic Workshops
in Computing (eWiC), 2013.

[168] Emmanouil Vasilomanolakis, Shankar Karuppayah, Mathias
Fischer, Max Mühlhäuser, Mihai Plasoianu, Lars Pandikow, and
Wulf Pfeiffer. This Network is Infected : HosTaGe - a Low-
Interaction Honeypot for Mobile Devices. In Security and pri-
vacy in smartphones & mobile devices, pages 43–48. ACM, 2013.
ISBN 9781450324915.

[169] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max
Mühlhäuser, and Mathias Fischer. HosTaGe: a Mobile Honey-
pot for Collaborative Defense. In 7th International Conference on
Security of Information and Networks (SIN), page 330. ACM, 2014.

[170] Emmanouil Vasilomanolakis, Jörg Daubert, Manisha Luthra,
Vangelis Gazis, Alex Wiesmaier, and Panayotis Kikiras. On the
Security and Privacy of Internet of Things Architectures and
Systems. In European Symposium on Research in Computer Se-
curity, International Workshop on Secure Internet of Things. IEEE,
2015.

[171] Emmanouil Vasilomanolakis, Shankar Karuppayah, Panayotis
Kikiras, and Max Mühlhäuser. A honeypot-driven cyber inci-
dent monitor: lessons learned and steps ahead. In International
Conference on Security of Information and Networks. ACM, 2015.

[172] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max
Mühlhäuser, and Mathias Fischer. Taxonomy and Survey of
Collaborative Intrusion Detection. ACM Computing Surveys, 47

(4):33, 2015. doi: 10.1145/2716260.

[173] Emmanouil Vasilomanolakis, Matthias Krügl, Carlos Garcia
Cordero, Max Mühlhäuser, and Mathias Fischer. SkipMon: A
Locality-Aware Collaborative Intrusion Detection System. In
International Performance Computing and Communications Confer-
ence. IEEE, 2015.

[174] Emmanouil Vasilomanolakis, Shreyas Srinivasa, and Max
Mühlhäuser. Did you really hack a nuclear power plant? An
industrial control mobile honeypot. In Conference on Communi-
cations and Network Security (CNS), pages 729–730. IEEE, 2015.
ISBN 9781467378765.

[175] Emmanouil Vasilomanolakis, Michael Stahn, Carlos Garcia, and
Max Muhlhauser. Probe-response attacks on collaborative intru-
sion detection systems : effectiveness and countermeasures. In
Conference on Communications and Network Security (CNS), pages
699–700. IEEE, 2015. ISBN 9781467378765.

bibliography 203

[176] Emmanouil Vasilomanolakis, Carlos Garcia Cordero, Nikolay
Milanov, and Max Mühlhäuser. Towards the creation of syn-
thetic, yet realistic, intrusion detection datasets. In IEEE/IFIP
Workshop on Security for Emerging Distributed Network Technolo-
gies (DISSECT). IEEE, 2016.

[177] Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia
Cordero, and Max Mühlhäuser. Multi-stage Attack Detection
and Signature Generation with ICS Honeypots. In IEEE/IFIP
Workshop on Security for Emerging Distributed Network Technolo-
gies (DISSECT). IEEE, 2016.

[178] Emmanouil Vasilomanolakis, Michael Stahn, Carlos Garcia, and
Max Muhlhauser. On Probe-Response Attacks in Collaborative
Intrusion Detection Systems. In Conference on Communications
and Network Security (CNS). IEEE, 2016.

[179] Chenfeng Vincent Zhou, Christopher Leckie, and Shanika
Karunasekera. Decentralized multi-dimensional alert correla-
tion for collaborative intrusion detection. Journal of Network
and Computer Applications, 32(5):1106–1123, sep 2009. ISSN
10848045.

[180] Nikos Virvilis and Dimitris Gritzalis. The Big Four - What
We Did Wrong in Advanced Persistent Threat Detection? In
International Conference on Availability, Reliability and Security,
pages 248–254. IEEE, 2013. ISBN 978-0-7695-5008-4. doi:
10.1109/ARES.2013.32.

[181] Vivek Vishnumurthy and Paul Francis. On Heterogeneous
Overlay Construction and Random Node Selection in Unstruc-
tured P2P Networks. In International Conference on Computer
Communications (INFOCOMM), pages 1–12. IEEE, 2006. ISBN
1-4244-0221-2.

[182] Vasileios Vlachos, Stephanos Androutsellis-Theotokis, and Dio-
midis Spinellis. Security Applications of Peer-to-Peer Networks.
Computer Networks, 45(2):195–205, 2004.

[183] Miroslav Voznak, Jakub Safarik, and Filip Rezac. Threat Pre-
vention and Intrusion Detection in VoIP Infrastructures. Inter-
national Journal of Mathematics and Computers in Simulation, 7(1),
2013.

[184] David Wagner and Paolo Soto. Mimicry attacks on host-based
intrusion detection systems. In ACM conference on Computer and
communications security - CCS ’02, pages 255 – 264, New York,
New York, USA, 2002. ACM Press. ISBN 1581136129.

204 bibliography

[185] Matthias Wählisch, Sebastian Trapp, Christian Keil, Jochen
Schönfelder, Thomas C Schmidt, and Jochen Schiller. First
Insights from a Mobile Honeypot. In ACM SIGCOMM con-
ference on Applications, technologies, architectures, and protocols
for computer communication, pages 305–306. ACM, 2012. ISBN
9781450314190.

[186] Matthias Wählisch, Thomas C Schmidt, Andre Vorbach, Chris-
tian Keil, Jochen Schonfelder, and Jochen Schiller. Design, Im-
plementation, and Operation of a Mobile Honeypot. Technical
report, 2013.

[187] Ke Wang and SJ Stolfo. Anomalous payload-based network
intrusion detection. In Recent Advances in Intrusion Detection,
pages 203–222. Springer Berlin, 2004.

[188] Ke Wang, G Cretu, and SJ Stolfo. Anomalous payload-based
worm detection and signature generation. In Recent Advances in
Intrusion Detection, pages 227–246. Springer Berlin, 2006.

[189] Z Yang. PowerTutor: A Power Monitor for Android-Based Mo-
bile Platforms. Technical report, University of Michigan, 2012.

[190] Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global in-
trusion detection in the domino overlay system. In Network and
Distributed System Security (NDSS), 2004.

[191] Sebastian Zander, Grenville J. Armitage, and Philip Branch. A
survey of covert channels and countermeasures in computer
network protocols. IEEE Communications Surveys, 9:44–57, 2007.

[192] Zheng Zhang, Jun Li, C N Manikopoulos, Jay Jorgenson, and
Jose Ucles. HIDE : a Hierarchical Network Intrusion Detection
System Using Statistical Preprocessing and Neural Network
Classification. In IEEE Workshop on Information Assurance and
Security, pages 85–90. IEEE, 2001. ISBN 0780398149.

[193] Chenfeng Vincent Zhou and Christopher Leckie. Relieving hot
spots in collaborative intrusion detection systems during worm
outbreaks. In NOMS 2008 - 2008 IEEE Network Operations and
Management Symposium, pages 49–56. IEEE, 2008. ISBN 978-1-
4244-2065-0.

[194] Chenfeng Vincent Zhou, Shanika Karunasekera, and Christo-
pher Leckie. A peer-to-peer collaborative intrusion detection
system. In International Conference on Networks, pages 118–123.
IEEE, 2005. ISBN 1424400007.

[195] Chenfeng Vincent Zhou, Shanika Karunasekera, and Christo-
pher Leckie. Evaluation of a Decentralized Architecture for

bibliography 205

Large Scale Collaborative Intrusion Detection. In IFIP/IEEE In-
ternational Symposium on Integrated Network Management, pages
80–89. IEEE, 2007. ISBN 1424407990.

[196] Chenfeng Vincent Zhou, Christopher Leckie, and Shanika
Karunasekera. A Survey of Coordinated Attacks and Collabo-
rative Intrusion Detection. Computers & Security, 29(1):124–140,
feb 2010. ISSN 01674048.

[197] Zhi-Hua Zhou. When semi-supervised learning meets ensem-
ble learning. Frontiers of Electrical and Electronic Engineering in
China, 6(1):6–16, jan 2011. ISSN 1673-3460.

[198] Kiyana Zolfaghar and Shahriar Mohammadi. Securing
Bluetooth-based payment system using honeypot. In Interna-
tional Conference on Innovations in Information Technology (IIT),
pages 21–25, dec 2009. ISBN 978-1-4244-5698-7.

colophon

This dissertation was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”.

D E C L A R AT I O N

I hereby confirm that the submitted thesis with the title “On Collabo-
rative Intrusion Detection” has been done independently and without
use of others than the indicated aids. I assure that I have not previ-
ously or concurrently applied for the opening of a promotion proce-
dure with the doctoral thesis submitted here.

Darmstadt, May 2015

Emmanouil Vasilomanolakis,
July 26, 2016

	Dedication
	Executive Summary
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Preface
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis contributions
	1.2.1 Taxonomy and Survey of CIDSs
	1.2.2 Alert Data Generation
	1.2.3 Collaborative Intrusion Detection

	1.3 Publications
	1.4 Thesis Outline

	2 Background
	2.1 Intrusion Detection Systems (IDSs)
	2.1.1 Classifications and definitions
	2.1.2 Passive and active monitoring

	2.2 Honeypots
	2.2.1 Mobile Honeypots
	2.2.2 Honeypots for ICSs
	2.2.3 Summary

	2.3 Evaluating IDSs
	2.3.1 IDS-Specific Datasets
	2.3.2 Dynamic Creation of Datasets
	2.3.3 Summary

	2.4 Conclusion

	3 Collaborative Intrusion Detection
	3.1 Introduction
	3.2 Requirements
	3.3 Attacks on CIDSs
	3.3.1 External attacks
	3.3.2 Internal attacks
	3.3.3 Discussion

	4 Taxonomy and State-Of-The-Art
	4.1 Taxonomy of Collaborative Intrusion Detection
	4.1.1 Local monitoring
	4.1.2 Membership management
	4.1.3 Correlation and aggregation
	4.1.4 Data dissemination
	4.1.5 Global Monitoring

	4.2 State-of-the-Art
	4.2.1 Centralized CIDSs
	4.2.2 Hierarchical CIDSs
	4.2.3 Distributed CIDSs
	4.2.4 Qualitative Comparison

	4.3 Summary

	Alert Data Creation
	5 HosTaGe Mobile Honeypot
	5.1 Introduction
	5.2 System Overview
	5.2.1 Architecture
	5.2.2 Graphical User Interface
	5.2.3 Protocols Emulation
	5.2.4 Formal Model
	5.2.5 Detection Mechanisms in HosTaGe

	5.3 Evaluation
	5.3.1 Honeypot Comparison
	5.3.2 Multi-Stage attacks
	5.3.3 Honeypot Evasion
	5.3.4 Signature Generation

	5.4 Summary

	6 TraCINg Cyber Incident Monitor
	6.1 Introduction
	6.2 Architecture of TraCINg
	6.2.1 TraCINg Core
	6.2.2 GUI
	6.2.3 Sensors
	6.2.4 Alerts

	6.3 Alert data analysis
	6.3.1 System Setup
	6.3.2 Data analysis
	6.3.3 Correlation of attacks

	6.4 Summary

	7 ID2T: An Intrusion Detection Dataset Creation Toolkit
	7.1 Introduction
	7.2 Requirements
	7.2.1 Functional Requirements
	7.2.2 Non-Functional Requirements

	7.3 ID2T
	7.3.1 Architecture
	7.3.2 Attack Generation
	7.3.3 ID2T Proof of concept

	7.4 Evaluation
	7.4.1 Performance Evaluation
	7.4.2 Artifacts Avoidance

	7.5 Discussion
	7.6 Summary

	Collaborative Intrusion Detection Systems
	8 Community-based Collaborative Intrusion Detection
	8.1 Introduction
	8.2 Community-based Collaborative Intrusion Detection
	8.2.1 Basic Concept
	8.2.2 Formal Model
	8.2.3 Parameters for Building Communities
	8.2.4 Community Formation
	8.2.5 Community-based Intrusion Detection

	8.3 Evaluation
	8.3.1 The DARPA Dataset
	8.3.2 The LERAD Integration
	8.3.3 Experimental Setup
	8.3.4 Results

	8.4 Summary

	9 SkipMon: a Domain-Aware Collaborative Intrusion Detection System
	9.1 Introduction
	9.2 SkipMon System Architecture
	9.2.1 Local Monitoring
	9.2.2 SkipNet Overlay
	9.2.3 Alert Dissemination
	9.2.4 Alert Correlation
	9.2.5 Community Formation

	9.3 Implementation
	9.4 Evaluation
	9.4.1 Dataset Description
	9.4.2 Evaluation Setup
	9.4.3 Results

	9.5 Summary

	10 Probe-Response Attacks
	10.1 Introduction
	10.2 PREPARE
	10.2.1 System Overview
	10.2.2 Improving PRAs
	10.2.3 Attack Detection and Mitigation

	10.3 Evaluation
	10.3.1 Simulation Setup
	10.3.2 Simulation Results
	10.3.3 Real-World Experiments

	10.4 Summary

	Epilogue
	11 Conclusion and Outlook
	11.1 Conclusion
	11.1.1 Alert Data Generation
	11.1.2 Collaborative Intrusion Detection

	11.2 Outlook
	11.2.1 Alert Data Generation
	11.2.2 Collaborative Intrusion Detection

	Appendix
	A Appendix A - HosTaGe Further Evaluation
	A.1 Malware detection in HosTaGe
	A.2 Battery consumption

	B Appendix B - SkipNet Background
	B.1 SkipNet

	C Appendix C - SkipMon Evaluation
	C.1 SkipMon Further Evaluation

	Bibliography
	Colophon
	Declaration

